The :
Fra}g'_mah{z

OZraImimers

Programming
our Home

Automate with Arduino,
Android, and Your Computer

Mike Riley

Edited by Jacquelyn Carter

Programming Your Home

Automate with Arduino, Android, and Your
Computer

by Mike Riley

Version: P1.0 (February 2012) Copyright © 2012 The Pragmatic Programmers, LLC.
This book is licensed to the individual who purchased it. We don't copy-protect it
because that would limit your ability to use it for your own purposes. Please don't

break this trust—you can use this across all of your devices but please do not share
this copy with other members of your team, with friends, or via file sharing services.
Thanks.

—Dave & Andy.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and The Pragmatic

Programmers, LLC

was aware of a trademark claim, the designations have been printed in initial
capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic
Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking

g device are trademarks of The Pragmatic Programmers,
LLC.

Every precaution was taken in the preparation of this

book. However, the publisher assumes no responsibility for errors or omissions,
or for damages that may result from the use of information (including program
listings) contained herein.

Our Pragmatic courses,

workshops, and other products can help you and your team create better software
and have more fun. For more information, as well as the latest Pragmatic titles,
please visit us at

http://pragprog.com.

http://pragprog.com

This book is dedicated to Bill, Eileen, and Josie.

Table of Contents

e Acknowledgments
e Preface

o Who Should Read This Book

o What’s in This Book

o Arduinos, Androids, and iPhones, Oh My!
o Code Examples and Conventions

o Online Resources

e Preparations

o Getting Started
m What Is Home Automation?

Commercial Solutions
DIY Solutions
Justifying the Investment
Setting Up Your Workbench
Sketching Out Your Ideas
Writing, Wiring, and Testing
Documenting Your Work
o Requirements
= Knowing the Hardware
= Knowing the Software
m Be Safe, Have Fun!
e Projects
o Water Level Notifier
m What You Need
Building the Solution

Hooking It Up

Sketching Things Out
Writing the Web Mailer

Adding an Ethernet Shield
All Together Now

= Next Steps
o Electric Guard Dog

= What You Need

m Building the Solution

Dog Assembly

Dog Training
Testing It Out

Unleashing the Dog
Next Steps
o Tweeting Bird Feeder
= What You Need
Building the Solution
The Perch Sensor
The Seed Sensor
Going Wireless
Tweeting with Python
Putting It All Together
m Next Steps
o Package Delivery Detector
= What You Need
Building the Solution
Hardware Assembly
Writing the Code
The Package Delivery Sketch
Testing the Delivery Sketch
The Delivery Processor
Creating the Delivery Database

Installing the Package Dependencies
Writing the Script

Testing the Delivery Processor
Setting It Up

= Next Steps
o WebEnabled Light Switch

= What You Need
Building the Solution
Hooking It Up
Writing the Code for the Web Client
Testing Out the Web Client
Writing the Code for the Android Client
Testing Out the Android Client
m Next Steps
o Curtain Automation
= What You Need

Building the Solution
Using the Stepper Motor
Programming the Stepper Motor
Adding the Sensors
Writing the Sketch
Installing the Hardware
Next Steps
o Android Door IL.ock
What You Need
Building the Solution
Controlling the Android Door Lock
Writing the Android Server
Writing the Android Client
Test and Install
m Next Steps
o Giving Your Home a Voice
= What You Need
Speaker Setup
Giving Lion a Voice
Wireless Mic Calibration

Programming a Talking Lion
Conversing with Your Home

= Next Steps
e Predictions
o Future Designs
m Living in the Near
» The Long View
m The Home of the Future
o More Project Ideas
m Clutter Detector
Electricity Usage Monitor
Electric Scarecrow

Entertainment System Remote
Home Sleep Timer

Humidity Sensor-Driven Sprinkler System
Networked Smoke Detectors

Proximity Garage Door Opener

Smart HVAC Controller

Smart Mailbox

m Smart Lighting
m Solar and Wind Power Monitors

e Appendices
o Installing Arduino Libraries

= Apple OSX
m Linux
= Windows

o Bibliography

Copyright © 2012, The Pragmatic Bookshelf.

Praise for Programming Your Home

Mike has a broad technology experience base that puts all the pieces of some
remarkable projects together. It’s amazing that he makes it all so easy and
affordable. Don’t miss all that can be learned from this gem.

— Michael Bengtson, Consultant

The Web-Enabled Light Switch project gave my family convenience and
security options and enhanced my knowledge of RS-232 communications. It is
nice to be able to switch on lights from my favorite chair. And the Tweeting Bird
Feeder project has opened my eyes to the uses of radio communications around
the home for things besides Wi-Fi, and it will help in my work to contribute to
the preservation of bird species that are struggling for food and habitat.

— Bob Cochran, Information Technology Specialist

With this book, Mike Riley celebrates the Arduino microcontroller in a way that
both beginning and advanced home automation hobbyists will enjoy.

— Sven Davies, Vice President of Applications

This is an outstanding reference that should be on the desk of every DIYer. In
much the same way that software engineers mention “The Gang of Four Patterns
Book,” I predict this text will eventually be referred to as “The Riley Book of
Home Automation.”

— Jon Kurz, President, Dycet, LLC

Every technology is only as exciting as the things you do with it. Mike takes a
few cheap electronics parts, an Arduino, and a bit of code and turns your home
into a much more exciting and enjoyable place. His easy-to-follow instructions
make every single one of these projects both fun and useful.

Maik Schmidt, Software Developer, Author of Arduino: A Quick-Start
Guide

I’ve had more fun learning new languages, systems, and gadgets with this book
than any other book I’ve read!
— James Schultz, Software Developer

Home automation is great fun, and Programming Your Home by Mike Riley will
get you started right away. By leveraging this book and the easily available

free/inexpensive hardware and software, anyone can tackle some great projects.
— Tony Williamitis, Senior Embedded Systems Engineer

This is a fun and enthusiastic survey of electronic devices that can interact with

the real world and that starts in your own home!

— John Winans, Chief Software Architect

Acknowledgments

I have been a lifelong tinkerer. My earliest recollection of dissecting my father’s
broken tape recorder instilled an appreciation for the technology that drove it.
From there, erector sets, model railroads, and programmable calculators led to
personal computers, mobile devices, and microcontrollers. Over the years, this
passion for learning not only how stuff works but also how technical concepts
can be remixed with surprising, often highly satisfying results has been
liberating. That’s why this book was such a joy for me to write.

Helping others to see what’s possible by observing their surroundings and
having the desire to take an active role in making their lives easier with
technology while having fun is this book’s primary goal. Yet without others
helping me distill my ideas into what you are reading now, this book would not
have been possible. It is to them that I wish to express my deepest gratitude for
their support.

A boatload of thanks goes to the book’s editor, Jackie Carter, who spent
countless hours ensuring that my words were constructed with clarity and
precision. Copy editor Molly McBeath did a fantastic job catching hidden (from
my view anyway) typos and grammatical misconstructions. Big thanks to
Susannah Pfalzer for her infectious enthusiasm and boundless boosts of
encouragement and to Arduino expert and fellow Pragmatic author Maik
Schmidt, whose own success helped pave the way for a book like this.

Many thanks also go to John Winans, tech wiz extraordinaire, who refactored the
state machine code used in several of the projects, as well as to Sven Davies,
Mike Bengtson, Jon Bearscove, Kevin Gisi, Michael Hunter, Jerry Kuch, Preston
Patton, and Tony Williamitis for helping to make this book as technically

accurate and complete as it is. Shout-outs also go to Jon Erikson and Jon Kurz
for their enthusiastic encouragement. I also want to thank Bob Cochran and Jim
Schultz for providing wonderfully helpful feedback during the book’s beta
period. Thanks also go to Philip Aaberg for filling my ears with music to code
by. And to the makers of and contributors to the Arduino and Fritzing projects,
you people have changed the world for the better.

I am most grateful to my wife, Marinette, and my family for allowing me to
tunnel away for months in my mythical man cave to complete this book. And I
can’t gush enough over the wonderful pencil illustrations that my daughter drew
for the book. I am so proud of you, Marielle!

Finally, I am sincerely thankful to Dave Thomas and Andy Hunt for their
passion and vision. You’re the best.

Mike Riley
mailto:mike@mikeriley.com
Naperville, IL, December 2011

Copyright © 2012, The Pragmatic Bookshelf.

mailto:mike@mikeriley.com

Preface

Welcome to the exciting, empowering world of home automation! If you have
ever wanted your home to do more than just protect you against the outside
elements and want to interface it to the digital domain, this book will show you
how. By demonstrating several easy-to-build projects, you will be able to take
the skills you learned from this book and expand upon and apply them toward
custom home automation projects of your own design.

The book’s primary objective is to get you excited about the broader possibilities
for home automation and instill the confidence you need to ultimately build upon
these and your own ideas. The projects also make great parent-child learning
activities, as the finished products instill a great sense of accomplishment. And
who knows? Your nifty home automation creations may even change the world
and become a huge new business opportunity for other homeowners actively
seeking an automation solution that saves them time and money.

Who Should Read This Book

Programming Your Home is best suited to DIYers, programmers, and tinkerers
who enjoy spending their leisure time building high-tech solutions to further
automate their lives and impress their friends and family with their creations.
Essentially, it is for those who generally enjoy creating custom technology and
electronics solutions for their own personal living space.

A basic understanding of Arduino and programming languages like Ruby and
Python are recommended but not required. You will learn how to combine these
technologies in unique configurations to resolve homemaker annoyances and
improve home management efficiencies.

In addition to the inclusion of Python scripts and Ruby on Rails-based web
services, several of the projects call upon Google’s Android platform to help
enhance the data event collection, visualization, and instantiation of activities. A
basic familiarity with the Android SDK will be beneficial so that the projects
that make use of the Android OS can offer a more mobile reach.

If you’re the type of person who prefers to build versus buy your home
accessories, this book will further motivate you to use what you learned in the
book as a starting point to expand upon and optimize them in various ways for
their environment. Even though some of the topics deal with multiple software-
and hardware-based solutions, they are easy to follow and inexpensive to build.
Most of all, they show how a few simple ideas can transform a static analog
environment into a smart digital one while having fun.

What’s in This Book

After a basic introduction to home automation and the tools of the trade, this
book will teach you how to construct and program eight unique projects that
improve home utility and leisure-time efficiencies. Each project incorporates a
variety of inexpensive sensors, actuators, and microcontrollers that have their
own unique functions. You will assemble the hardware and codify the software
that will perform a number of functions, such as turning on and off power
switches from your phone, detecting package deliveries and transmitting emails
announcing their arrival, posting tweets on Twitter when your bird feeder needs
to be refilled, and opening and closing curtains depending on light and
temperature, and more.

Because the recommended skill set for building these solutions includes some
familiarity with programming, this book builds upon several previously
published Pragmatic Bookshelf titles. If you would like to learn more about
programming Arduinos or writing Ruby or Python scripts, I strongly recommend
checking out the books listed in Appendix 2, Bibliography.

Each project begins with a general introduction and is followed by a What You
Need section that lists the hardware parts used. This is followed by a section
called Building the Solution that provides step-by-step instructions on
assembling the hardware. Programming Your Home will call upon the Arduino
extensively for most (but not all) of the projects. Once the hardware is
constructed, it can be programmed to perform the automation task we built it to
do. Programs can range from code for Arduino microcontrollers to scripts that
execute on a computer designed to control, capture, and process the data from
the assembled hardware elements.

The book concludes with a chapter on future projections in home automation and
a chapter filled with idea starters that reuse the hardware and software
approaches demonstrated in the eight projects.

Arduinos, Androids, and iPhones, Oh My!

With the meteoric rise of mobile device proliferation, the post-PC moniker has
made its way into the tech world’s vocabulary. I am a big proponent of
technology shifts, but I am also old enough to have lived through three major
computing revolutions (the shift from mainframes to PCs, the rise of the Internet,
and the shift from PCs to mobile devices) and know that change isn’t as fast as
people say it is. Until mobile applications can be developed on mobile devices
the way PC applications can be developed on PCs, a Linux, Windows, or Mac
computer will be a central requirement for developing mobile apps. The same
holds true for Arduino programming.

That said, the times are indeed a-changing. Microsoft Research was one of the
first major phone OS providers to attempt to create native mobile applications
directly on the mobile device with their release of TouchStudio. Google engineer
Damon Kohler created the Scripting Layer for Android (SL4A) that gives
Android users the ability to write fairly sophisticated programs using a text
editor on their phone. Coupled with Sparkfun’s IOIO (“yo-yo0”) board, we’re
already seeing early glimpses of what could replace the PC for some of the
scripts created for this book.

Since you will need a Mac, Linux, or Windows computer to program the
Arduinos and mobile apps in this book, this computer will also be the machine
that runs the server-side programs that interpret and extend information out to
your mobile devices. Of course, if you only have one computer and it’s a laptop
that travels with you, consider purchasing a cheap Linux or Mac to run as your
home server. Not only will you benefit from having a dedicated system to run
the monitoring apps 24/7/365, but it can also serve as your home Network
Attached Storage (NAS) server as well.

I am a believer in open source hardware and software. As such, the projects in
the book depend upon these. I am also technology-agnostic and rarely have any
overriding devotion to one hardware supplier or programming language. Code
for this book could have been presented just as easily in Mono-based C# and

Perl, but I opted for Ruby and Python because of their portability and multiparty
open source support. I could have used a Windows or Linux machine as the
server and development system but chose Mac for the book because Ruby and
Python are preinstalled with the OS, thereby eliminating the time and space
required to install, configure, and troubleshoot the operating environment.

In accordance with this open source philosophy, I also opted to demonstrate the
mobile application examples exclusively for the Android OS. While I personally
prefer iOS devices as the platform of choice for my mobile lifestyle, the
overhead associated with writing applications for iOS is a hassle. In addition to
learning Objective-C and the various frameworks as well as dealing with the
burden of memory management, deploying iOS apps requires either a jailbroken
device or the legitimate purchase of an annual membership to Apple’s iPhone
developer network. Conversely, Android’s SDK and application deployment is
free and open. Android programs can also multitask better than iOS programs.
Of course, these two advantages also bring on greater security and resource
utilization risks. That said, I encourage readers who prefer the mobile demos to
run on non-Android devices to port the simple client programs presented in this
book to their favorite mobile OS and share these conversions with the
Programming Your Home community.

Another term that is gaining a foothold in the tech press is the “Internet of
Things.” This phrase refers to the idea that with the proliferation of network-
connected microcontrollers, Internet-based communication between such small
devices will eventually outnumber people surfing the Web. While that may be
the case for submitting data upstream, reaching such a device from the Internet is
still a hassle. Besides the technical knowledge required to set up a dynamic DNS
and securely configure port forwarding to easily reach the device, ISPs may
block outbound ports to prevent end consumers from setting up dedicated
servers on popular network ports like FTP, HTTP/S, and SMTP.

The projects in this book should work perfectly fine in a home local area
network. However, obtaining sensor data outside of this local network is a
challenge. How do you check on the status of something like a real-time
temperature reading without going through the hassles of opening and

forwarding ports on your router (not to mention the potential security risks that
entails)?

Fortunately, several companies have begun to aggressively offer platforms
accessible via simple web service APIs to help overcome these hassles. Three of
these gaining momentum are Pachube, Exosite, and Yaler.[1] Configuring and
consuming their services is a fairly straightforward process. I encourage you to
visit these sites to learn more about how to incorporate their messaging
capabilities into your own projects.

Code Examples and Conventions

The code in this book consists of C/C++ for Arduino, Java for Android, Ruby
for web middleware, and Python for desktop scripts. Most of the code examples
are listed in full, except when burdened by external library overhead (such as in
the case of Android and Ruby on Rails program listings). Syntax for each of
these languages is highlighted appropriately, and much of the code is commented
inline along with bullet markings to help bring attention to the big ideas in the
listings.

Highlights and sidebars are used sparingly in the book in an effort to keep
information moving at a quick yet manageable clip.

Online Resources

Visit the book’s website at http://pragprog.com/titles/mrhome, where you can
download the code for all the projects, participate in the book’s discussion

forum, ask questions, and post your own home automation ideas. Bugs, typos,
omissions, and other errors in the book can be found on the book’s errata web

page.

Other popular website resources include the popular DIY websites Makezine,
and Instructables,[2] where participants share a wide variety of home-brewed
creations with their peers.

There are also several IRC channels on freenode.net and SIG forums on Google
Groups dedicated to the subject, with many focused on singular aspects of DIY
gadget design, home automation, and hardware hacking.[3]

OK, enough with the preamble. Let’s get ready to build something!

Footnotes

http://www.pachube.com, http://www.exosite.com, and
[1] http://www.yaler.org, respectively.

2] http://www.makezine.com and http://www.instructables.com, respectively.

[3] http://groups.google.com/group/comp.home.automation/topics

Copyright © 2012, The Pragmatic Bookshelf.

http://pragprog.com/titles/mrhome
http://www.pachube.com
http://www.exosite.com
http://www.yaler.org
http://www.makezine.com
http://www.instructables.com
http://groups.google.com/group/comp.home.automation/topics

Part 1
Preparations

Getting Started

Before we start wiring up hardware and tapping out code, let’s lay down the
foundation, starting with what exactly we mean by home automation, what’s
been available in the consumer space in the past, and why building our own
solutions makes sense today and in the future.

We will also review a couple of design and construction best practices that will
be put to good use when assembling the projects in this book.

We’ll start by defining what we mean by home automation. Next we’ll consider
some of the prepackaged commercial solutions on the market, and then we’ll
take a quick snapshot of some of the more popular custom automation hardware
and software projects. The chapter will conclude with some of the tools and
practices that have helped me quite a bit when building the projects in this book
as well as with other projects beyond the home automation category.

1.1 What Is Home Automation?

So what exactly does the term home automation mean? At its most basic level,
it’s a product or service that brings some level of action or message to the home
environment, an event that was generated without the homeowner’s direct
intervention. An alarm clock is a home automation device. So is a smoke alarm.
The problem is, these stand-alone devices don’t use a standard network
communication protocol, so they can’t talk to one another the way that
networked computers can.

One of my earliest memories of home automation was when the Mr. Coffee
automatic drip coffee machine came out in the early 1970s. The joy this simple
kitchen appliance brought my coffee-drinking parents was genuine. They were
so pleased to know that when they woke up in the morning a freshly brewed pot
of coffee would be waiting for them. Who would have thought that such a simple
concept as a coffee maker combined with an alarm clock would change their
world?

Now that we’re in the twenty-first century, rudimentary coffee makers are
getting a makeover by tinkerers bolting network adapters, temperature sensors,
and microcontrollers to make the brew at the right time and temperature and to
send a text message alert that the beverage is ready for consumption. It’s only a
matter of time before manufacturers incorporate inexpensive electronics into
their appliances that do what tinkerers have been doing with their home
electronics for years. But a standard communication protocol among such
devices remains elusive. Nevertheless, efforts are afoot by a number of home
automation vendors to address that problem.

1.2 Commercial Solutions

The number of attempts to standardize home automation communication
protocols has been ongoing nearly as long as Mr. Coffee has been in existence.
One of the earliest major players was X10, a company that still offers basic and
relatively inexpensive home automation solutions today. X10 takes advantage of
existing electrical wiring in the home. It uses a simple pulse code protocol to
transmit messages from the X10 base station or from a computer connected to an
X10 communication interface. But problems with signal degradation,
checksums, and return acknowledgments of messages, as well as X10’s bulky
hardware and its focus on controlling electrical current via on/off relay switches,
have constrained X10’s broader appeal.

Other residentially oriented attempts at standards, such as CEBus and Insteon,
have been made, but none have attained broad adoption in the home. This is
partly due to the chicken-and-egg problem of having appliance and home
electronics manufacturers create devices with these interfaces and protocols
designed into their products.

Most recently, Google has placed its bet on the Android operating system being
embedded into smart devices throughout the home. Time will tell if Google will
succeed where others have failed, but history is betting against it.

Rather than wait another twenty years for a winning standard to emerge,
embedded computing devices exist today that employ standard TCP/IP to
communicate with other computers. This hardware continues to drop to fractions
of the prices they cost only a few years ago. So while the market continues to
further commoditize these components, the time is now for software developers,
home automation enthusiasts, and tinkerers to design and implement their own
solutions. The lucky few will uncover and market a cost-effective, compelling
solution that will one day catch on like wildfire and finally provide the impetus
to forever change our domestic lives.

1.3 DIY Solutions

The Do-It-Yourself category in home automation is more active today than ever
before. The combination of inexpensive electronics with low-cost networked
computers make this option extremely attractive. There’s other reasons that
make DIY an ideal pursuit. Unlike proprietary commercial offerings, the projects
you build are not mysterious black boxes. You have the source code. You have
the knowledge. You have the measurements, the metrics, and the methods.

Not only will you know how to build it, you will know how to troubleshoot,
repair, and enhance. None of the commercial solutions can match exactly what
you may need. Home automation vendors have to generalize their products to
make them appeal to a large consumer base. By doing so, they don’t have the
luxury of creating one-off solutions that exactly match one customer’s specific
needs. But with some rudimentary knowledge and project construction
experience, you’ll gain the confidence to create whatever design matches your
situation.

For example, the first project in this book builds a sump pit notifier that emails
you when water levels exceed a certain threshold. While commercial systems
have audible alarms, none that I have found at the local hardware store have the
means to contact you via such messaging. And should you need to modify the
design (add a bright flashing LED to visually broadcast the alert, for example),
you don’t need to purchase a whole new commercial product that includes this
feature.

Walk around your house. Look for inefficiencies and repetitive tasks that drive
you crazy the way George Bailey was with pulling off the loose finial on his
staircase’s newel post. Take note of what can be improved with a little ingenuity
and automation. You may be surprised at just how many ideas you can quickly
come up with.

1.4 Justifying the Investment

Let’s be honest. Spending more money on parts that may or may not work well
together versus buying a cheaper purpose-built device that meets or exceeds the
functionality of a homegrown solution is simply not a good investment. Sure,
there may be some value derived from the knowledge gained from the design
experience, the pleasure of building the solution, and the satisfaction of seeing
your creation come to life. But justifying such an investment to a budget-
conscious spouse, for example, may deflate whatever gains you have made in the
satisfaction department.

When considering any new design approach, strive for a scenario where you will
maximize your time, equipment investment, and learning potential. You may
have to try several experiments and iterations before the hardware and software
come together and work the way you envisioned. But if you keep at it, you will
be well rewarded for your persistence. Not only will you achieve high points for
devising a low-cost solution, but such constraints will help drive creativity to
even higher levels. That’s why I have tried my best to keep all the projects in this
book within a reasonable budget, and I encourage reuse of old electronic parts
and materials as much as possible.

Do your homework. Research online to see who may have attempted to build
what you have in mind. Did they succeed? Was it worth the money and time they
invested? Is there a commercially viable alternative?

If you determine that your idea is unique, put together an estimate of the
expenses in terms of your time and of the materials you need to purchase.
Remember to also include the cost of any tools you need to buy to construct and
test the project’s final assembly. This added expense is not negligible, especially
if you’re just starting down the DIY road. As you get more involved with
hardware projects, you will quickly find that your needs will expand from an
inexpensive soldering iron and strands of wire to a good quality multimeter and
perhaps even an oscilloscope. But the nice thing about building your own
solutions is that you can build them at your own pace. You will also find that as

your network of DIYers grows, your opportunities for group discussion,
equipment loans, insightful recommendations, and encouragement will grow
exponentially.

1.5 Setting Up Your Workbench

Good assembly follows good design. Building these projects in a frustration-free
environment will help keep your procedures and your sanity in check.

Work in a well-lit, well-ventilated area. This is especially important when
soldering. Open a window and use a small fan to push the fumes outside. Use a
soldering exhaust fan if an open window isn’t an option.

If your work space can afford it, have a large table to spread out your electronic
parts. Keep it close to power outlets and have a power strip on the table for easy
access.

Organize your components with small craft containers, baby food jars, pill
boxes, Altoids tins—anything that helps keep the variety of capacitors, resistors,
LEDs, wires, shields, motors, and sensors sorted will make it much easier to
keep track of your parts inventory.

Have your computer stationed near or on the work space. This is a no-brainer if
it’s a laptop. If it’s a desktop, minimize its table footprint by only placing a
monitor, mouse, and keyboard (both preferably wireless) on the table to leave as
much unobstructed working space as possible.

Keep clutter away from underneath and around the table. Not only does this aid
fire prevention, but doing so will also make it far easier to find that elusive
component when it rolls off the table and bounces toward the unknown.

Lastly, keep the work space dedicated to project work. Some projects can be like
building a jigsaw puzzle. You need a place for the half-assembled pieces to sit
while life goes on. Being able to sit down and start working, rather than start
unboxing and repackaging a fur ball of wires and parts, makes building projects
a joy instead of a chore.

1.6 Sketching Out Your Ideas

When inspiration strikes, nothing beats old-fashioned pencil and paper to
quickly draw out your ideas. For those who prefer to brainstorm their designs on
a computer, several free, open source, cross-platform tools have helped me
assemble my ideas and document my work:

e Freemind is great for organizing thoughts, objectives, and dependencies.[4]
This mature mind-mapping application helps you make sense of a brain
dump of ideas and see the links between them. This will save you time and
money because you will be able to spot key ideas, eliminate redundancies,
and prioritize what you want to accomplish.

e Fritzing is a diagraming application specifically designed for documenting
Arduino-centric wiring.[5] Unfortunately, it’s still a work in progress and is
rough around the edges. It also doesn’t have a number of the popular
sensors iconically represented yet, but the object library is growing as more
people contribute to the project. I use this application exclusively for
documenting my Arduino-based projects, which is why the wiring diagrams
in this book were generated by Fritzing.

¢ Inkscape is an easy-to-use vector-based drawing program that helps sketch
out ideas beyond the Arduino-centricity of Fritzing.[6] While Inkscape is
mainly intended for graphic artists, it has accurate measurement tools that
are great for scoping out bracket and enclosure ideas for your projects.

Going beyond the desktop, tablets are rapidly taking over the role that were once
the domain of traditional paper uses. In fact, it wouldn’t surprise me if you’re
reading this book on an iPad or a Kindle right now. Beyond just reference
lookups, tablets are excellent for brainstorming ideas and creating initial
sketches of preliminary project designs. An iPad (or Android tablet, for that
matter) combined with a sturdy stand also makes for a handy electronic
reference. Load up your sketches, track your progress, reorder priorities, and
make notes along the way.

My current favorite iPad apps for my projects include the following:

e Elektor Electronic Toolbox is an electronic parts reference with a variety of
helpful calculators and conversion tools.[7]

e iCircuit is a electronic circuit simulator that makes building and
understanding circuits far easier than static diagrams on a printed page.[8]

e iThoughts HD is a mind-mapping application compatible with importing
and exporting Freemind files.[9]

e miniDraw is a vector-based drawing program that can export to SVG
format, perfect for importing your sketches into Inkscape.[10]

In addition to designing and documenting your projects, well-executed projects
also rely on taking accurate measurements and running tests to validate your
work.

1.7 Writing, Wiring, and Testing

Unfortunately, no good software emulator exists yet for the Arduino; fortunately,
programs for this platform are usually small and specific enough such that the
compile-run-debug cycles are tolerable. Good coding and testing techniques go a
long way toward ensuring a high-quality outcome. The same goes for
constructing and wiring up the physical electrical connections.

While nearly all of the projects in this book can be constructed without solder,
permanent installations require good soldering techniques to ensure a conductive
pathway. It’s best to verify (usually with the help of a breadboard) that the
connections work as expected before making them permanent with solder.

Use good code-testing techniques. Whether for microcontroller code for the
Arduino or server-side code for your Ruby or Python scripts, Test-Driven
Development (TDD) is a good practice to adopt. There are a number of good
testing frameworks and books available on the subject. Read Ian Dees’s article,
“Testing Arduino Code,” in the April 2011 edition of PragPub magazine,[11] as
well as Continuous Testing: with Ruby, Rails, and JavaScript [RC11].

Run unit tests like py.test when writing Python-powered scripts. When coding in
Ruby and creating Rails-based web front ends, consider using Rspec (for more
details on using Rspec, read The RSpec Book [CADHO09]). Use the Android
testing framework for your Android applications.[12] Even when working on
small applications, using proven testing methodologies will help keep you sane
while further elevating the quality in your code.

Know how to use a multimeter. Like a software debugger, a multimeter can
come in quite handy when trying to figure out what’s happening inside your
project—for example, where a short might be stepping on your project. Besides
detecting problems, a multimeter is also useful for measuring electrical output.
For example, you can also use it to determine if a solar battery pack can deliver
enough uninterrupted energy to power a microcontroller-operated servo.

If you’re not familiar with how a multimeter operates, just type “voltmeter
tutorial video” in your favorite search engine. There are plenty online to choose
from.

1.8 Documenting Your Work

Hand-drawn scribbles offer nice starting points, but often projects take twists
and turns along the way that have to account for limited resources or hardware
that just doesn’t work as planned. The final product may be vastly different from
the original design. That’s why it’s so important to finish a project with accurate,
clean, and concise documentation, especially if you plan to share your design
with others.

Using applications like Fritzing can aid with the generation of clean, full-color
wiring diagrams. Doing so will go a long way toward showing exactly how to
wire up a project. Nothing is worse than seeing blurry, angled Flickr photos or
YouTube videos of wires plugging into hard-to-see shield or breadboard pinholes
as the primary means of documentation. Having those are nice supplementals,
but any well-designed project should be accompanied by clear and easy-to-
follow wiring illustrations.

Leave verbose comments in your code, even for the simple scripts and sketches.
Not only will it help you and those you share the code with understand what
various routines are doing, good comments will also put you back in the frame
of mind you were in when writing the code in the first place. And if you share
your code on various repository sites like Github and Sourceforge, well-
commented code shows a greater level of professional polish that will gain you
more respect among your peers.

With all these recommendations, keep in mind that the most important takeaway
from the book’s projects is to have fun doing them. These rewarding experiences
will encourage you to use these projects as starting points and infuse your own
unique needs and design goals into them.

In the next chapter, we will review the hardware and software we will use and
take into account the optimal configurations of each.

Footnotes

http://freemind.sourceforge.net

=

http://fritzing.org/

=

http://inkscape.org

=

http://www.creating-your-app.de/electronic_toolbox_features.html?&I[.=1

S

http://icircuitapp.com/

=

[9] http://ithoughts.co.uk
[10] http://minidraw.net/

[11] http://www.pragprog.com/magazines/2011-04/testing-arduino-code

[12] http://developer.android.com/guide/topics/testing/testing_android.html

Copyright © 2012, The Pragmatic Bookshelf.

http://freemind.sourceforge.net
http://fritzing.org/
http://inkscape.org
http://www.creating-your-app.de/electronic_toolbox_features.html?&L=1
http://icircuitapp.com/
http://ithoughts.co.uk
http://minidraw.net/
http://www.pragprog.com/magazines/2011-04/testing-arduino-code
http://developer.android.com/guide/topics/testing/testing_android.html

Requirements

Before diving into the book’s projects, we need to consider the materials and
best practice methodologies we will employ when building the solutions.

A key tenet I practice in this book is for the various projects to be as easy and
inexpensive to build as possible. While it may be fun to construct an elaborate
Rube Goldberg contraption that costs hundreds of dollars to open a can of soup,
it’s far more practical to spend a dollar on a can opener that you can buy from
the store. I have tried my best to maximize the value of money and time with
each project. As such, few of them should cost more than sixty dollars in parts or
take more than an hour to construct.

It’s also good to practice reuse whenever possible. This is far easier for software
than for hardware, but it can be done. That is why an inexpensive
microcontroller board like the Arduino is at the center of several of these
projects.[13] In an effort to save money on the hardware investment, it may be
worthwhile to try out one or two projects concurrently and decide which ones
make the most positive impact before buying a half dozen Arduino boards. After
you have built the projects that you’re most interested in, then build upon them,
improve them, and remix them. When you have an especially cool creation,
contribute your discoveries to the Programming Your Home book forum.

Most software development projects typically do not require much more than a
computer and the choice of language and frameworks the programming logic
executes within. But with the addition of hardware sensors, motors, and purpose-
built radios and controllers, the design and construction workflow is a little more

complex. Essentially, you are building two major components with each project:
the physical collection of hardware and the software that will measure, interpret,
and act on the data that the hardware collects. Let’s take a look at what
comprises these two key development aspects.

2.1 Knowing the Hardware

The Arduinos, sensors, and motors (technically referred to as actuators) used in
the projects can be purchased from a number of online retailers, with my current
two favorites being Adafruit Industries and Sparkfun.[14] For the budget-
conscious builder, Craigslist and eBay offer money-saving deals. Purchasing
used parts from these online classified listing services may come in especially
handy when searching for old Android handsets and X10 controls. But buyer
beware: there is often little recourse you can take should a used part stop
working a few days after you have received it. Companies like Adafruit and
Sparkfun stake their reputations on their over-the-top customer support and will
usually accommodate any reasonable replacement request.

Each project in the book contains a What You Need section that lists the
hardware and software components required to build the solution. The hardware
used is nothing exotic or difficult to find and purchase online, and some projects
even incorporate common household items like dry cleaning clothes hangers and
cloth scraps in their parts list. Here is a complete inventory of electronic
components required to build the projects in this book and their estimated per
item costs:

e Arduino Uno, Duemilanove, or Diecimila - $30

e Ethernet shield - $45

e Wave shield with speaker, wire, and SD card - $35
¢ Passive infrared (PIR) motion sensor - $10

e Flex sensor - $12

e Force sensitive resistor - $7

e TMP36 analog temperature sensor - $2

CdS photoresistor (commonly referred to as a photocell) - $1
Standard servo motor - $15

Smarthome electric 12VDC door strike - $35

Two XBee modules and adapter kits - $70

FTDI connector cable - $20

Solar charger with built-in rechargeable battery - $30

X10 CM11A ActiveHome serial computer interface - $50
X10 PLWO1 standard wall switch - $10

Serial USB converter - $20

Home computer (Linux or Mac preferred) - $200 to $2,000, depending on
model

Wireless Bluetooth speaker - $120
Android G1 phone - $80 to $150, depending on its used condition

Android smartphone - $50 to $200, depending on features and carrier
contract

Sparkfun IOIO board with JST connector, barrel jack to 2-pin JST
connector, and 5VDC power supply - $60

Male USB to male mini-USB cable - $3
2.1 mm female barrel jack cable - $3
Spool of wire (22 AWG should be adequate) - $3

10K ohm resistor - $0.10

e 10M ohm resistor - $0.10

¢ Small breadboard - $4

e FElectrical tape or heat shrink tubing - $5

e 9-volt DC power supply - $7

e 12-volt 5A switching power supply - $25

e PowerSwitch Tail IT with a 1K resistor and a 4222A NPN transistor - $20
¢ Stepper motor - $14

Each of these parts is reusable with the projects throughout the book. Naturally,
if a particular project is permanently installed in your home, you will have to
replenish the inventory to replace the parts used in that permanent fixture. Do It
Yourself (DIY) hardware project building, like writing code, is a satisfyingly
addictive experience. As your confidence grows, so too will your expenditures
on electrical components.

Of all the parts used throughout the book, three items that are frequently called
upon are Android smartphones, Arduinos, and XBee radios. I will give a brief
overview of each in the next sections. If you intend to leverage these useful
electronics further, refer to the Android, Arduino, and XBee titles in Appendix 2,
Bibliography, for more information on these remarkable, transformative
technologies.

Android Programming

The Android operating system is continuing its rapid expansion and domination
in certain telecommunications and embedded systems markets. Google
announced its Android@Home initiative and is encouraging developers and
consumer electronics manufacturers to consider Android as a base technology
for smart home systems. Several electronics vendors have released hardware that
is compliant with the Android Open Accessory Development Kit (ADK) and
that takes advantage of the interfaces Google has designed.[15]

The ADK board I chose is Sparkfun’s IOIO board. ADK support for the IOIO
was still in beta at the time of this book’s publication, and loading the ADK-
enabled firmware on the board is not a trivial exercise. Chapter 9, Android Door
Lock, instead discusses a project in this book using traditional Android SDK
calls while incorporating the custom hardware library that the IOIO board
currently provides.

As the cost of ADK developer hardware drops, more economically viable
options will be available for developers and manufacturers alike. But for now, a
used first-generation Android phone coupled with an IOIO is still far more
powerful and much less expensive than a comparably spec’d ADK board with
the same features (camera, GPS, Bluetooth, Wi-Fi) as a smartphone. By the time
ADK devices become cheap and plentiful, you will be ahead of the game by
having working knowledge of the Android application development ecosystem.

Some Android-centric projects involve building both a native client and a server
application. While the client applications could have been written in a device-
agnostic web framework like jQuery Mobile,[16] it’s useful to stress the
importance of native mobile app development. By having this native foundation
from the start, you will be able to more easily call upon advanced phone
functions that are inaccessible from a web-based interface. Native applications
also tend to load and respond faster than their browser-based counterparts.

While it’s not necessary to have prior experience developing Android
applications to build the Android programs in this book, it will certainly help to
have some familiarity with the Android SDK.[17]

Arduino Programming

If you have C or C++ coding experience, you will feel right at home with writing
code for the Arduino’s ATMega 168/328 microcontroller. Arduino programs,
known as sketches, are easy to write once you learn the basic structure of an
Arduino application.

Let’s take a quick look at the basic anatomy of an Arduino sketch. It begins with
#include statements at the head of the sketch import code libraries, just as they are

in C programs. This is followed by global variable and object initializations that
are usually referenced in the sketch’s setup() routine. The setup() function is
typically used to reference physical wiring connection points, known as “pins”
on the Arduino board, along with the global variable assignments made in the
initialization section. An example of this assignment might be something like int
onboard_led = 13; before setup(). This code instructs the Arduino to use pin 13 (the
location of its onboard LED) to be accessible in the sketch. We can then assign
the pin for output with the line pinMode(onboard_led, OUTPUT) within the setup()
routine.

After the variable assignment and setup() program initializations are established,
sketches enter the main loop() routine that infinitely iterates over the instructions
contained within it. It is here that the sketch waits for some event to occur or
repeats a defined action. We will revisit this structure and the process of writing,
compiling, and running Arduino programs again in our first project, the Chapter
3, Water Level Notifier.

Any text editing program can be used to write sketches, with the most popular
being the free Arduino Integrated Development Environment (IDE) available for
download from the Arduino website. This Java-based coding environment
incorporates everything you need to compile your sketches into machine-
friendly ATMega microcontroller instructions. It also comes bundled with
dozens of sample sketches to help you quickly learn the syntax and realize the
number of different sensors and motors that the Arduino can interact with. And
because it is based on Java, the Arduino IDE will run identically on Windows,
Mac, and Linux computers.

Vi
< Does the Arduino IDE Have a Virtual Emulator?

Unlike most desktop and mobile application development, no official Arduino emulator exists. It’s
difficult to simulate all the different physical sensors and motors that the Arduino can be connected to.
Several third-party attempts have been made to create such a tool, but they are either limited in the
operating systems they support or focus on the ATMega chip and not the full Arduino package. Two
Windows-based emulators are Virtual Breadboard and Emulare,[18] with Virtual Breadboard being
the one I recommend due to its virtual representation of Arduino hardware. Virtual Breadboard also

provides a limited set of emulated sensors and other devices that connect to the onscreen Arduino.

Given the low cost of the Arduino itself, few find much use for an emulator other than for unit testing
and convenient, portable virtual hardware reasons. Spend the money for an actual board rather than
messing around with the emulators. Sketches are short, and the serial window in the Arduino IDE is
helpful enough to offer detail to adequately debug and tweak real-live hardware.

XBee Programming

Another key technology we will be using in several of the projects is a radio
device based on the IEEE 802.15.4 wireless specification, commonly known as
XBee. XBee radios are ideal for Arduino-based wireless projects due to their
low-cost, low-power, and easy-to-use serial interface communication. Low-
powered XBees are used mainly for character-level bitstream communications.
Broadcast distances between radios are roughly within a fifteen-meter (50-foot)
radius.

The projects in this book that incorporate XBee-to-XBee communications use
single characters or short strings to announce a state change as a result of a
sensor event. Such changes are then broadcast wirelessly to a paired XBee
modem that is usually attached to a computer or embedded system that processes
the received signal. I prefer to log this data before acting upon it to store events
and help with debugging. After logging the received data, the computer may also
further propagate the signal by translating it into a web service-friendly payload,
an email message, a servo motor movement, or any other call to action.

The most time-consuming and challenging aspect of using XBees is correctly
assembling the hardware and pairing the radios. It is not a trivial procedure, but
it is also not too difficult either. Fortunately, Limor “Ladyada” Fried, founder of
Adafruit Industries and open hardware electrical engineer extraordinaire, has
posted a terrifically helpful tutorial on her website that provides detailed, step-
by-step instructions on assembling XBee adapter kits sold along with the XBee
radio modules. We will explore this further when we use XBees for the first time
in the Chapter 5, Tweeting Bird Feeder project.

Incidentally, Digi International, the company who manufacturers the XBee

hardware, recently announced a 802.11 b/g/n Wi-Fi--capable XBee that obviates
the need for a second XBee connected via an FTDI cable for the receiving PC.
However, the cost for this convenience is considerably more than the
configuration I used in the book. If you’re interested in this more convenient
approach, check out the XBee Wi-Fi page on Digi’s website.[19]

A number of books (such as Building Wireless Sensor Networks [Fal10]) and
online resources go into greater detail on learning basic electronics, Arduino
programming, and wireless networking. This section simply provided an
overview of how to work with the specific hardware we will use in this book’s
projects. In the next section, we will take a quick survey of the software we will
use to bring the assembled hardware to life.

2.2 Knowing the Software

In addition to being familiar with the C/C++ syntax used for programming
Arduino sketches, you will be able to follow along easier if you are familiar with
the Java, Ruby, and Python languages. Ruby on Rails experience is also a plus. If
you are unfamiliar with these, review Appendix 2, Bibliography, for several
titles that do a great job of teaching these languages and frameworks.

Even if you don’t know much about these languages, you should be able to build
and execute the code for these projects with little or no modification on a Linux
or Macintosh computer. Windows users will need to install their preferred
Python and Ruby distributions as well as the Java runtime, and some of the
utilities used in this book that were written for Unix-based operating systems
might not have a Windows version available. A PC can be loaded with your
preferred Linux distribution, and a Mac Mini will be more than adequate for the
OS X crowd. This home server should be a reasonably inexpensive component
in the Programming Your Home hardware collection.

Java familiarity will come in handy when writing the Android client and server
applications later in the book. Experience with Python and Ruby is also a plus.
Python also comes preinstalled on Mac and on nearly all Linux distributions. As
such, a majority of server-side scripts in this book are Python-based. Java, Perl,
PHP, or Ruby developers intent on staying pure to their favorite technology
shouldn’t have too difficult a time porting the project’s server-side applications
to their language of choice. I encourage any readers interested in porting the
book’s code to a different language to share their work with other readers via the
book’s website.

2.3 Be Safe, Have Fun!

I deliberately designed the projects in this book to have little or no chance of
electrical shock or damage to persons or property should something unexpected
occur. It should go without saying that you should always employ safe practices
when assembling any hardware project.

Proceed at Your Own Risk. You Have Been Warned!
Your safety is your own responsibility. Use of the instructions and suggestions in
this book is entirely at your own risk. The author and the Pragmatic
Programmers, LLC, disclaim all responsibility and liability for any resulting
damage, injury, or expense as a result of your use or misuse of this information.

It is your responsibility to make sure that your activities comply with all
applicable laws, regulations, and licenses. The laws and limitations imposed by
manufacturers and content owners are constantly changing, as are products and
technology. As a result, some of the projects detailed here may not work as
described or may be inconsistent with current laws, regulations, licenses, or user
agreements, and they may even damage or adversely affect equipment or other
property.

Power tools, electricity, and other resources used for these projects are
dangerous unless used properly and with adequate precautions, including proper
safety gear (note that not all photos or descriptions depict proper safety
precautions, equipment, or methods of use.) You need to know how to use such
tools correctly and safely. It is your responsibility to determine whether you have
adequate skill and experience to attempt any of the projects described or
suggested here. These projects are not intended for use by children.

Make sure you are comfortable with any risks associated with a project before
starting that project. For example, if the idea of dealing with 110V power worries
you, then don’t do the projects that use it, and so on. We also don’t know about
any local ordinances that might apply to you, so before you go wiring stuff in,
you should check your building codes. If in doubt, have a chat with a local
professional.

Only build these projects if you agree that you do so at your own risk.

Good luck, and have fun!

In addition to the book’s disclaimers that I as the author and The Pragmatic
Bookshelf as the publisher cannot be held liable for any damages of any kind as
a consequence of building and powering these projects (as well as be held liable
in any way for hardware you use or modify for these projects—for specific
details, see Proceed at Your Own Risk. You Have Been Warned!), I cannot stress
this highly enough: unless you are a certified electrician, plumber, or carpenter
and know exactly what you’re doing at all times, don’t start poking around and
tampering with the basic infrastructures found in the home. Call upon the
experience of professional, certified electricians when wiring for the home. Trust
me. The up-front planning and outside expertise will deter aggravation, save you
money, and protect you from physical harm. Leaving these foundational aspects
to the professionals will leave you with more time to implement and optimize
your ultra-cool and envy-invoking smart home creations.

OK, enough with the requirements and disclaimers. Let’s dive into the next
section, where we will finally get to assemble and code some really nifty and
unique home automation projects!

Footnotes

[13] http://arduino.cc/

[14] http://www.adafruit.com and http://www.sparkfun.com, respectively.

[15] http://developer.android.com/guide/topics/usb/adk.html

[16] http://jquerymobile.com/

[17] http://developer.android.com/sdk

http://www.virtualbreadboard.net and http://emulare.sourceforge.net/,
[18] respectively.

[19] http://www.digi.com/xbeewifi

http://arduino.cc/
http://www.adafruit.com
http://www.sparkfun.com
http://developer.android.com/guide/topics/usb/adk.html
http://jquerymobile.com/
http://developer.android.com/sdk
http://www.virtualbreadboard.net
http://emulare.sourceforge.net/
http://www.digi.com/xbeewifi

Part 2
Projects

Water Level Notifier

If you live in the midwestern part of the United States like I do, you know all
about heavy rains and the effects they can have on a basement. Stories of sump
pumps failing during torrential downpours are often punctuated with “Had I only
known how quickly the water level in my sump pit was rising, I would have had
more time to move my stored items out of the way.”

Imagine another scenario, where someone needs to use a dehumidifier to remove
dampness in a cellar. Inexpensive dehumidifiers often stop working when water
reaches a certain height in the condensation bucket. Some models may include
an audible alarm or flashing light when this shutdown occurs, but such alerts are
ineffective because the dehumidifier is typically installed in an infrequently
visited area.

Wouldn’t it be more convenient to receive an email from your house when the
water levels in these containment areas exceed a certain threshold, alerting you
to take action? (See Figure 1, Have your house email you.) Let’s get our feet wet,
so to speak, and build a system that will provide this helpful notification service.

Figure 1. Have your house email you ...when water levels rise
precipitously to give you enough time to prevent flood damage. This
project can also be used to monitor water levels in dehumidifiers, air

conditioners, and similar devices.

3.1 What You Need

The main component required to make this project work is something called a
flex sensor. The buoyancy of rising water levels will bend the sensor. As the
sensor bends one way or the other, current values will increase or decrease
accordingly. The sensor’s position can be read with a simple Arduino program
and can be powered via either the Arduino’s 3.3 or 5.0 volt pins.

Figure 2. Water Level Notifier parts

Here’s the complete list (refer to the photo in Figure 2, Water Level Notifier
parts):

1. An Arduino Uno

2. An Ethernet shield[20]

8.

9.

A flex sensor[21]

A 10k ohm resistor[22]

A 1-inch fishing bobber

Three wires (power, ground, and analog pin 0) trimmed to desired length

A 9-volt power supply to power the Arduino and Ethernet shield once
untethered from the USB cable

A pole or wood plank to attach and hang the flex resistor from

A web server running PHP 4.3 or higher (not pictured)

You will also need a standard A-B USB cable (not pictured) to connect the
Arduino to the computer and an Ethernet cable (also not pictured) to connect the
Ethernet shield to your network.

We will be reusing the Arduino and Ethernet shield again in several other
projects, so—not including the cost of these two items—the remaining hardware
expenses should be under twenty dollars. Considering the peace of mind and the
ease with which you can build further ideas upon this concept, this is money
well spent.

Arduino Ethernet

Would you prefer a board that combines the Arduino Uno and the Arduino
Ethernet shield into a single package? The Arduino Uno Ethernet may be what
you're looking for.[23] However, the board still needs to reserve digital pins 10
through 13 for the Ethernet module, just like the separate Ethernet shield does.
The Arduino Uno Ethernet also requires an FTDI cable to interface with a
computer rather than the more popular A-B USB cable.[24] The biggest
advantage that this board has to offer is the ability to combine Ethernet services
with another Arduino shield, assuming that shield does not require the same pin
resources that the Ethernet hardware requires.

3.2 Building the Solution

Before the Water Level Notifier can start broadcasting alerts, we need to
complete the following tasks:

1. Attach wires and a resistor to the exposed sensor leads on one end of the
flex resistor and the fishing bobber on its other end.

2. Connect the leads of the flex sensor to an analog pin of an Arduino.

3. Write a program (i.e., sketch) for the Arduino that will monitor changes in
the flex sensor readings. It should trigger an event when a large-enough
deviation from the initial value is detected.

4. Attach an Ethernet shield to the Arduino so that the sketch can
communicate with a web server running PHP.

5. Write a PHP script that will capture incoming values from the Arduino.
When the water level has changed, it should format a message and send an
email alert to the intended recipient, who will need to react quickly to the
alert!

We will begin by assembling the hardware and testing out the flex sensor
measurements.

3.3 Hooking It Up

Let’s start by making sure our flex sensor works the way we intend it to. Connect
the positive lead of the sensor to the Arduino’s 5.0-volt pin using a wire. When
looking at the flex sensor standing on its end, the positive lead is the trace that
runs vertically. The negative lead is the one that looks like the rungs of a ladder.
Connect the negative lead to the analog 0 pin with another wire. Lastly, bridge
the analog 0 pin to the ground pin using the 10k ohm resistor to dampen the flow
of current through the circuit. Refer to Figure 3, Water Level Notifier wiring
diagram, to make sure you attach the wires and resistor to the correct pins.

Attach the bobber to the end of the flex sensor. Most bobbers come with a
retractable hook that can be fastened to the plastic tip of the sensor. If the bobber
doesn’t stay affixed to the sensor, you can also use hot glue or heat shrink tubing
to help keep the bobber attached. Just be careful not to damage the sensor when
heating it with these affixing solutions. You can also try duct tape as a safe
alternative, though the tape may lose its grip over time.

Use plenty of wire so you have enough length to safely mount the Arduino and
power source far away from the water source. The Arduino that I have
monitoring my sump pit is sitting in a hobby box mounted on the wall several
feel above the sump pit, and the two wires attached to the flex resistor are about
two meters (roughly six feet) in length.

IIIIIIIIIIIIIIIIIIIII.I

Figure 3. Water Level Notifier wiring diagram

Now that the Arduino has been wired up, we can work on the logic of what the
hardware is supposed to do for us. We will begin with a quick test program that
will verify that the flex sensor is connected correctly and working properly.

3.4 Sketching Things Out

Before we start writing code, we first need to make sure we can communicate
with the Arduino. Then we will learn how to collect and act upon data sent by
the flex sensor with a program (what the Arduino community prefers to call a
sketch).

The first sketch we write will detect when the flex resistor values have changed.
If the change is large enough (in other words, if water is making the resistor
bend), we will transmit a request to a PHP server that will process the request.
That server will then send out an email notifying us of the change.

We will build the sketch incrementally, first by connecting the flex sensor to the
Arduino and collecting values when the sensor is straight and then when it bends
in both directions. Once these values have been identified, we will write
conditional statements that will call functions to send HTTP GET statements
containing data we will include in the email alert.

Configuring an Arduino

We will use the Arduino IDE to write, compile, and download our code into the
Arduino. For those who would like a more comprehensive introduction to
Arduino programming, read Maik Schmidt’s excellent Arduino: A Quick Start
Guide [Sch11].

If you are already familiar with the Arduino or are willing to hang on for the
ride, let’s get started by launching the Arduino IDE. Check to ensure that your
Arduino is connected via USB cable and recognized and selected accordingly on
one of the serial ports identified by the Arduino IDE’s Tools — Serial Port menu.
You can perform a quick test of your configuration with the LED Blink example
program located in the Arduino IDE’s File — Examples — 1.Basics — Blink menu.
Upload it to the attached Arduino and check to see that it executes correctly.

If it fails to do so, first verify that the Arduino is correctly plugged into the
computer and powered by the USB. If it is, check next to be sure you’ve selected

the correct serial port in the Arduino IDE and highlighted the right type of
Arduino board in the Tools — Board. A few correctly placed mouse clicks on
either of these settings usually fixes the problem.

The Flex Sensor Sketch

Now that the Arduino is connected and tested, we can write a sketch that will
validate and interpret the bending of the flex sensor. We will begin by defining a
few constants that we will refer to in the program.

Since we have to account for the sensor bending in either direction, we will
define two named constants that will be used to set the upper and lower
threshold limits.

We place these constants at the beginning of the sketch so they’re easier to locate
in case we need to edit these values later on. By convention, defined constants
are also all uppercase so that they are easier to identify in the code. Let’s call
them FLEX_TOO_HI and FLEX_TOO_LOW. The range between these upper and lower
limits will depend on the degree of flex that is optimal for your own scenario. I
prefer a variance of plus or minus five units to allow a minor amount of bend
before the notification event is triggered. Having such a range will allow us to
account for minor environmental effects like a light breeze or a low-grade
vibration.

We also need to account for the Arduino’s onboard LED and the analog pin that
the flex sensor is attached to.

® FLEX_TOO_HIGH is the value of the assigned analog pin when the flex sensor is
bent forward past this threshold.

e FLEX_TOO_LOW is the value of the assigned analog pin when the flex sensor is
bent backward past this threshold.

e ONBOARD_LED is assigned to the Arduino’s onboard LED located at pin 13.

We will use it provide us with a visual indicator when the flex resistor has
deviated far enough to send an alert. This allows us to use the Arduino’s

onboard LED as a kind of visual debugger so that we can visually confirm
that the flex events are being detected.

® FLEX_SENSOR is connected to the analog pin on the Arduino that the flex

resistor is connected to. In this case, that value is 0 because the resistor is
connected to pin 0.

These constants will be defined at the beginning of the sketch.

#define FLEX_TOO_HI 475
#define FLEX_TOO_LOW 465
#define ONBOARD_LED 13
#define FLEX_SENSOR 0

Now we will create two variables to capture the changing value and state of the
flex resistor and set their initial values to zero.

e bend_value will store the changing analog values of the flex resistor as it
bends.

e bend_state is the binary condition of the flex sensor. If it’s straight, its value
is equal to zero. If the flex resistor deviates either direction, we will set its
state to one.

These variables will follow after the define statements we wrote earlier.

int bend_value

byte bend_state

With the constants defined and the variables initialized, we need to set up the
serial port to monitor the continuous stream of values being polled in the main
program’s loop. The onboard LED also has to be configured so we can see it turn
on and off based on the bend_state of the flex resistor.

void setup()

http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelSensor.pde
http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelSensor.pde
http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelSensor.pde

// for serial window debugging
Serial.begin(9600);

// set pin for onboard led
pinMode (ONBOARD_LED, OUTPUT);

With the upper and lower flex bending limits defined, we need a routine that will
check to see if these limits have been exceeded. If they have, we will turn on the
Arduino’s onboard LED. When the flex resistor returns to its resting straight
position, we will turn the LED off.

void SendWaterAlert(int bend_value, int bend_state)

{
digitalWrite(ONBOARD_LED, bend_state ? HIGH : LOW);
if (bend_state)
Serial.print("Water Level Threshold Exceeded, bend_value=");
else
Serial.print("Water Level Returned To Normal bend_value=");
Serial.println(bend_value);
}

Note the first line of this code block: digitalWrite(ONBOARD_LED, bend_state ? HIGH :
Low);. This ternary operation polls the current state of the flex resistor based on
the value (0 or 1) that we passed to the function. The conditional statement that
follows prints out an appropriate message to the Arduino IDE’s serial window. If
the bend_state is true (HIGH), the flex resistor has been bent past the limits we
defined. In other words, water has exceeded the threshold. If it’s false (LOW),
the flex resistor is straight (i.e., the water level is not rising).

All that is left to write is the program’s main loop. Poll the FLEX_SENSOR pin
(currently defined as analog pin 0) every second for any increase or decrease in
value. When a flex event is detected, print the bend_value to the serial port so we

can see it displayed in the Arduino IDE’s serial window.

void loop()
{

http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelSensor.pde
http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelSensor.pde

// wait a second each loop iteration
delay(1000);

// poll FLEX_SENSOR voltage
bend_value = analogRead(FLEX_SENSOR);

//
//
//
Serial
Serial

print bend_value to the serial port for baseline measurement
comment this out once baseline, upper and lower threshold
limits have been defined

.print("bend_value=");
.println(bend_value);

switch (bend_state)
{
case 0: // bend_value does not exceed high or low values
if (bend_value >= FLEX_TOO_HI || bend_value <= FLEX_TOO_LOW)
{
bend_state = 1;
SendWaterAlert(bend_value, bend_state);
}
break;
case 1: // bend_value exceeds high or low values
if (bend_value < FLEX_TOO_HI && bend_value > FLEX_TOO_LOW)
{
bend_state = 0;
SendWaterAlert(bend_value, bend_state);
}
break;
}

The main loop of the sketch will poll the value of the flex resistor every second.
A switch statement tests the condition of the flex resistor. If its last status was

straight (case 0:), check to see if it has since bent beyond the upper and lower

threshold limits. If so, set the bend_state accordingly and call the SendwaterAlert

function. Conversely, if the resistor’s last status was bent (case 1:), check to see if

it’s now straight. If it is, set the bend_state variable to zero and pass that new state

to the SendWaterAlert function.

Depending on the type of flex sensor and Ethernet shield used along with the
voltage pin selected, your baseline value may be different from the baseline one
I recorded. My flex sensor reported a value of 470.

Note the use of semicolons to mark the end of a line of instruction and brackets
to identify conditional blocks. Save the file. It’s also a good idea to place this
and all other code you write under your preferred choice of version control
before proceeding. I recommend Git,[25] but others like Mercurial and
Subversion are certainly better than any non--version controlled alternative.

Later on, we will ask the SendwaterAlert function to call another function that will
connect to a designated PHP server. This in turn will send an email alert that will
contain the appropriate alert and the bend_value being monitored. But before we
do, we will verify that our threshold test is working by monitoring the messages
sent to the Arduino IDE’s serial window.

Run the Sketch

Save and click the Verify button in the Arduino IDE’s toolbar. This will compile
the sketch to check for any syntax errors. After confirming that there are none,
send the sketch to the Arduino by clicking the Upload button on the toolbar. You
should see the Arduino’s onboard LED flash a few times, indicating that it is
receiving the sketch. When the rapid flashing stops, the sketch should be
running.

Open up the Arduino IDE’s Serial Monitor window. Assuming you haven’t yet
commented out the Serial.print("bend_value="); statement in the main loop of the
sketch, observe the numbers that are continuously scrolling upward at a rate of
roughly once a second on the serial monitor’s display. If the characters being
displayed in the window look like gibberish, make sure to select the correct baud
rate (in this case, 9600) in the serial monitor’s drop-down list located in the
lower right corner of the serial monitor window. Take note of the values of the
flex resistor when it is straight, bent forward, and backward.

Depending on the amount of electrical resistance and the type of hardware being
used, update the FLEX_ TOO_HIGH and FLEX_TOO_LOW constants to better calibrate
them to the changing values you are seeing in the serial window. Once these
defined amounts have been entered, save the program and upload again to the
Arduino, performing the same procedure as before. It may take two or three tries

to narrow in on the high and low values that help determine the bend state of the
flex resistor.

With the modified upper and lower limits set to best suit your particular
configuration, observe the Arduino’s onboard LED to ensure that it lights up
when the flex resistor bends far enough forward or backward and turns off when
the resistor is straightened back to its original position.

Testing the Sketch

When you are confident that the hardware setup and the uploaded Arduino
sketch are behaving correctly, it’s time to try a simple water test by filling up a
bowl with water and dipping the bobber into the water while holding the base of
the flex resistor between your thumb and forefinger. As an extra precaution,
wrap any exposed solder connecting the two wires to the flex resistor in
waterproof electrical tape. I suggest wrapping the tape several layers thick, both
to have a solid base to hold the resistor as well as to protect it from any errant
drops of water that may accidentally splash or spill.

After properly and safely setting up the test, verify that as the buoyancy of the
water deflects the bobber attached to the flex resistor, the resistor bends far
enough in either direction to turn the LED light on.

Be careful not to submerge the exposed flex resistor. While the amount of
current flowing through the Arduino is relatively low, water and electricity can
make for a deadly combination. Place any electronics, including the flex resistor
and attached bobber, in a sealed plastic bag with enough room to allow the flex
resistor to bend. Use a high degree of caution to make absolutely sure to not get
any of the exposed wiring or electrical connections wet. Doing so could damage
your equipment or, even worse, you.

The base functionality of the water level notifier is complete. However, its
method of communicating a rise in water height is limited to a tiny LED on the
Arduino board. While that may be fine for science projects and people who work
right next to the Arduino monitoring the water source in question, it needs to
broadcast its alert beyond simple light illumination.

Receiving an email notification makes more sense, especially when the location
of water measurement is somewhere in the home that is not frequently visited.
Perhaps the detector will even operate at a remote location, such as when
monitoring the status of a sump pit at a vacation home after a heavy rain.

To do so, we will need to clip on an Ethernet shield to the Arduino and write
some code to send an email when the bend threshold is crossed. But before we
add more hardware to this project, we first need to set up a web-based email
notification application that our Arduino sketch can call upon when it needs to
send out an alert.

3.5 Writing the Web Mailer

Libraries for sending email directly from the Arduino abound. But these all rely
on a stand-alone, dedicated email server providing the mail gateway. So even
though the mailer code can be compiled into the Arduino sketch, the solution
still relies on an intermediary to send messages from the Arduino to the email
inbox of the intended recipient(s).

If you have access to an SMTP mail server that you can connect to for outbound
message transmission, check out Maik Schmidt’s Arduino: A Quick Start

Guide [Sch11]. His book supplies the necessary code and walkthrough on how to
make this work. If you don’t have access to a dedicated SMTP gateway, we can
use an Internet web hosting service that supports sending email from a PHP
script.

Why Use a PHP-Enabled Web Server for This Project?
Quite simply, because they are the most prevalent web-hosting server
configurations. While | personally prefer a more modern web application
framework like Django or Ruby on Rails hosted within a virtual private server
(VPS), these technologies are not as universally supported by hosting providers
compared to PHP. This wouldn’t be a problem if we hosted the web server within
our own network (which we in fact do in Chapter 7, WebEnabled Light Switch) or
had access to a VPS. But given the setup configuration overhead associated with
running both a web server and an email server that correctly sends outbound
SMTP messages, it's easier to go this route for our first project.

Sending email via PHP can be done with a single PHP file in a single line of code.
That said, if you are interested in writing functional equivalents for your personal
favorite web frameworks, go for it! If you succeed, please considering sharing
your discoveries with the Programming Your Home book discussion community.

For this project, I have chosen a popular, preconfigured PHP-enabled web server
with an SMTP outbound gateway, a configuration that popular website hosting
companies like Dreamhost.net, Godaddy.com, and others offer to their
customers.

The PHP script for sending email consists of only a few short lines of code. First,
we will pass two parameters to the server: the type of alert to send and the
recorded value of the flex resistor. Then we will compose a mail message
containing the recipient’s email address, the subject, and the message contents.
Then we will send the email.

<?php

// Grab the type of alert to email and

// the current value of the flex resistor.
$alertvalue = $_GET["alert"];

$flexvalue = $_GET["flex"];

$contact = 'your@emailaddress.com';
if ($alertvalue == "1") {
$subject = "Water Level Alert";
$message = "The water level has deflected the flex
resistor to a value of " . $flexvalue . ".";

mail($contact, $subject, $message);
echo("<p>Water Level Alert email sent.</p>");

} elseif ($alertvalue == "0") {
$subject = "Water Level OK";
$message = "The water level is within acceptable levels.

Flex resistor value is . $flexvalue . ".";

mail($contact, $subject, $message);
echo("<p>Water Level OK email sent.</p>");

}

>

The script calls the built-in PHP mail function that passes three required
parameters: recipient(s), subject, and the body of the email. Yes, it’s that simple.

Save the code to a file called wateralert.php in the root web directory of your
PHP server. You can test the script by opening your web browser and visiting
http://MYPHPSERVERNAME/wateralert.php?alert=1&flex=486. The page should return a
Water Level Alert email sent. message in the browser window, and a corresponding
email message should appear in the defined recipient’s inbox. If it doesn’t, check
your PHP server settings and make sure that your web server is properly

http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/wateralert.php

configured to use a working email gateway. If you’re still not having luck with
the message test, contact your website hosting provider to make sure your hosted
solution is correctly configured for PHP email messaging.

By abstracting the delivery mechanism from the logic running in the Arduino,
we can easily modify the message recipients and contents.

Securing Your Notifications
If you plan on having this PHP script provide a permanent service for Arduino
message passing, consider adding a layer of security to the transmission signal
so that only the Arduino can trigger the message condition.

This could be done by something as simple (though weak) as a password value
passed in the HTTP GET parameters or by a more secure hash transaction that
trades an authentication conversation between the Arduino and the web server.
While adding a good security routine is beyond the scope of this project, it's a
good idea to incorporate such functionality so that your publicly exposed PHP
email entry point isn’t abused by unwelcome connections.

Now that we have a working message gateway, we can hook up the Arduino to
an Ethernet shield so the deflected flex resistor can talk to the rest of the world.

3.6 Adding an Ethernet Shield

Attach the Ethernet shield to the Arduino by lining up the base pins so that the
Ethernet jack is on top and facing the same direction as the Arduino USB jack.
Reconnect the wires to the 5V and analog-in 0 (A0) pins found on the Ethernet
shield just like you did when these wires were connected to the Arduino.

Do the same for the 10k ohm resistor bridging across the ground (Gnd) and A0
pins. Run your test again and check the values. In my tests, the base value being
read was different compared to the Arduino without the Ethernet shield, and
yours will likely reflect similar results. Since we’re more interested in the
deviation from this base value than the calibration of the actual value itself, it’s
important to use the unbent resistor value in the code and then determine how far
of a plus or minus deflection from this base value is acceptable before
transmitting the alert.

Now that our hardware is network-enabled, we can add the necessary code to our
sketch that transmits the flex sensor status to our PHP server.

Coding the Shield

We will programmatically send data via the Ethernet shield. But we first must
include a reference in the sketch to both the Arduino Ethernet library and its
dependency, the Serial Peripheral Interface (SPI) library.[26] These two libraries
contain the code needed to initialize the Ethernet shield and allow us to initialize
it with network configuration details. Both libraries are included in the Arduino
IDE installation, so the only thing we need to do is import the SPLh and Ethernet.h
libraries via the #include statement. Add these statements at the beginning of the
sketch:

#include <SPI.h>
#include <Ethernet.h>

With the Ethernet library dependency satisfied, we can assign a unique Media

http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelNotifier.pde

Access Control (MAC) and IP address to the shield. While DHCP libraries are
available from the Arduino community, it’s easier just to set the shield with a
static IP address.

Arduino on Linux and the Ethernet Library
If you are using the Linux version of the Arduino IDE, you might encounter a
problem with the Ethernet reference library. The problem manifests itself by
transmitting garbled broadcasts from the Ethernet shield. Fortunately, a fork of
the Ethernet library, aptly named Ethernet2, is available for download.[27] Refer
to Appendix 1, Installing Arduino Libraries, for more details. Once the Ethernet2
library is installed, replace the broken Ethernet.h in the original #include statement
with #include Ethernet2.h instead.

For example, if your home network uses a 192.168.1.1 gateway address, set the
address of the shield to a high IP address like 192.168.1.230. If you plan on
using this address as a persistent static IP, refer to your home router’s
documentation on how to set a static IP range within a DHCP-served network.

// configure the Ethernet Shield parameters
byte MAC[] = { OxDE, OxAD, OxBE, OxEF, OxFE, OXEF };

// replace this shield IP address with one that resides within
// your own network range
byte IPADDR[] = { 192, 168, 1, 230 };

// replace with your gateway/router address
byte GATEWAY[] = { 192, 168, 1, 1 };

// replace with your subnet address
byte SUBNET[] = { 255, 255, 255, 0 };

// replace this server IP address with that of your PHP server
byte PHPSVR[] = {???, ???, ??2?, ?27};

// initialize a Client object and assign it to your PHP server's
// IP address connecting over the standard HTTP port 80
Client client(PHPSVR, 80);

http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelNotifier.pde

Assign constants for the static MAC and IP addresses that will be used by the
Ethernet shield. Add the address of your Internet router to the GATEWAY value,
and add your SUBNET value as well (most home network subnets are
255.255.255.0). The IP address of your PHP server also has to be declared prior
to the sketch’s setup routine.

Ethernet Shield DNS and DHCP
The Ethernet library does not natively include any DNS or DHCP functionality.
This capability is expected to arrive in an upcoming release of the Arduino
platform. But until that day arrives, we cannot use a server name like
www.mycoolwaterlevelproject.com for a web server address and must use the
server’s assigned IP address instead.

Thanks to the efforts of Arduino enthusiast George Kaindl, using DNS and DHCP
with an Ethernet shield is possible. If you don’t mind the extra overhead these
libraries add to the Arduino’s already constrained program storage capacity,
check his Arduino Ethernet libraries for more details.[28]

With the constants declared, we can now properly initialize the Ethernet shield in
the setup section of the sketch.

void setup()
{

// for serial window debugging
Serial.begin(9600);

// set up on board led on digital pin 13 for output
pinMode (ONBOARD_LED, OUTPUT);

// Initialize Ethernet Shield with defined MAC and IP address
Ethernet.begin(MAC, IPADDR, GATEWAY, SUBNET);

// Wait for Ethernet shield to initialize

delay(1000);

Note the use of the Ethernet object in Ethernet.begin(MAC, IPADDR, GATEWAY, SUBNET);.
This is where the Ethernet shield gets initialized with the assigned Media Access

http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelNotifier.pde

Control (MAC) address and IP Address.

OK, we have a working network connection. Now we can move on to the next
step of requesting the appropriate emailer page on your PHP server when the
bend thresholds have been exceeded.

Sending a Message

Up to this point, we have told the Arduino to report the analog values being
generated by the flex resistor, initialized the Ethernet shield to connect the

Arduino to our network, and added stubs for routines to call out to our PHP
server script. Now it’s time to add that routine. We’ll call it ContactWebServer.

The ContactWebServer routine will take the same two parameters we captured for
the SendWaterAlert function, namely band_value and bend_state. Add the
ContactWebServer(bend_value, bend_state); line at the end of the SendwaterAlert
function, since we will talk to the designated PHP web server address each time
the flex resistor state changes.

We’re almost done. We just have to write the body of the ContactwebServer
function. This will consist of connecting to the PHP web server and printing the
well-formed HTTP GET string to the server. The string will contain and pass the
values of the bend_state and bend_value variables. These will then be parsed on the

server side and the PHP function will respond in kind.

void ContactWebServer(int bend_value, int bend_state)

{

Serial.println("Connecting to the web server to send alert...");

if (client.connect())

{
Serial.println("Connected to PHP server");
// Make an HTTP request:
client.print("GET /wateralert.php?alert=");
client.print(bend_state);
client.print("&flex=");
client.print(bend_value);

http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelNotifier.pde

client.println(" HTTP/1.0");
client.println();
client.stop();

}

else

{

Serial.println("Failed to connect to the web server");

It’s time to test the completed sketch. Download it to the Arduino, open up a
serial monitor window, bend the flex resistor, and watch the messages. Check
your recipient’s inbox for the corresponding email messages. Did you receive the
“Water Level Alert” and “Water Level OK” email messages that correspond to
the notifications you saw in the serial monitor window? If not, make sure that
your Arduino is connected to your home network by pinging the IP address you
assigned.

Test the PHP email URL and verify that you receive an email when you enter
http://MYPHPSERVER/wateralert.php?alert=1&flex=486 into your web browser. When
everything works as expected, we will be ready to put the finishing touches on
this project and make it fully operational.

3.7 All Together Now

We’re nearing the home stretch. Your hardware should look like the setup
pictured in Figure 4, An assembled water level notifier. All that remains is
mounting the flex resistor securely and safely in place so that its flexion is
accurately detected and not impeded by any obstacles.

The base where the two wires attach to the exposed flex resistor leads needs to
be firmly stabilized so that when the water level rises and pushes the bobber
upward, the base does not pivot at its fulcrum. If it does pivot, the flex resistor
will remain straight and the running Arduino sketch will fail to send the
appropriate alert notification. Keep the base stabilized and prevent it from
pivoting.

Try using hot glue, heat shrink tubing, or duct tape. If the base still moves, try
attaching a small wood chip splint on each side of the base of the flex resistor.
Extend the splint length-wise approximately two centimeters above and below
the base. Then snugly wrap the splint several times with electrical tape. Tack the
top of the splinted base to a small wood post (such as that cut from a typical two-
by-four piece of lumber) that spans the diameter of the hole containing the water
source.

In the case of a sump pit, you will need to remove the cover of the pit, measure
the interior diameter and visit a lumberyard or hardware store that can cut the
wood for you. Add an extra centimeter to the cut so that the beam can be wedged
tightly as it spans the pit.

Figure 4. An assembled water level notifier

Similar principles apply in the case of a dehumidifier. Instead of using a large
piece of wood to act as the mounting base support, use the bottom, pants-
hanging portion of an old wooden hanger that can be cut to slightly longer than
the diameter of the dehumidifier’s water collection bucket. Mount the base of the
splinted flex resistor in the center of the wood support. Depending on the depth
of the dehumidifier’s bucket, you may need to raise the base of the flex resistor
higher so that the alert doesn’t trigger prematurely when the bucket is only half-
full.

Once you’re satisfied with the stability of the mounted resistor, place the bobber
and flex resistor inside a small plastic bug, such as a locking seal sandwich bag.
This will keep the resistor dry and protected if the water level rises excessively.
Run the wires attached to the resistor a meter or more from the measured water
source and attach them to the Arduino/Ethernet shield assembly. Power the
Arduino using the 9-volt power supply and attach the network cable to the
Ethernet shield. Several seconds after you power up the Arduino, perform a
quick bend test. If you received the water alert and all-clear messages in your
email inbox, then you have succeeded!

Replace the cover of the water containment vessel you are monitoring and wait
for your device to alert you to rising water levels.

3.8 Next Steps

Congratulations on completing the first Arduino-assisted home automation
project in this book. You have already learned a lot of reusable ideas in this
project. You programmed an Arduino, captured and processed data from a flex
resistor, and sent emails with the help of a PHP-enabled web server and the
Arduino Ethernet shield. We will be applying these concepts again in some of
the other projects in this book.

The cool thing about designing and building your own projects is that they can
each be tailored to your own exacting requirements. Prefer a tweet instead of an
email alert when the water level exceeds the measurement threshold? No
problem. Replace the email functionality with the code from the Tweeting Bird
Feeder project later in this book. Want an overt visual indicator instead of an
electronic message, something like a blockbuster action movie warning lamp
that flashes on and off? Easy. Hook up a switch to the lamp that can be
controlled to turn on and off at regular intervals with code lifted from the web-
enabled light switch project.

Here are a few other ideas to further extend the use of a flex resistor in the home:

e Use the variable analog data that is emitted from the resistor to determine
not only when it has been flexed but also to what degree. This could be
useful in a rain gauge application used to track incremental measurements
of rainfall based on the deflection of the resistor by the buoyant bobber.

e Add an hourly data transmission to the sketch and a routine in the PHP
component to receive the message. Current bend values should be
transmitted in this message as well. Check the values for anomalies, such as
having no value (0) if it’s broken or something greater than 999 if there is a
short circuit. Send an email alert when such threshold values are detected.
Additionally, if the transmission isn’t received in a two-hour time frame,
send an email informing the recipient of that fact. This enhanced
monitoring will let you know that your hardware may be having issues and

needs further attention.

e Temperature variations may affect the calibration of the flex sensor. Attach
a temperature sensor and dynamically change the trigger point values based
on the surrounding ambient temperature readings.

e Concerned about losing roofing tiles, shingles, or siding to the wind?
Replace the bobber with a wind cup like those found mounted on weather
stations sold by scientific instrument supply companies, set it up outside,
and receive an email alert when the wind is becoming excessively strong.

¢ If you use a flap door for your pet, anchor one end of the flex resistor to the
flap frame and slide the untethered end into a small vinyl tube attached to
the flap to allow the resistor to slide freely but still flex when the door flap
is being pushed open on either end. Combine the sensor trigger with a web
cam capture so you can verify that it’s your family pet coming in and out of
the house and not some uninvited guest.

Footnotes

http://www.adafruit.com/index.php?
[20] main_page=product_info&cPath=17 21&products_id=201

21] http://www.sparkfun.com/products/8606

[22] http://www.makershed.com/ProductDetails.asp?ProductCode=JM691104

23] http://www.adafruit.com/products/418

[24] https://www.adafruit.com/products/70

[25] http://git-scm.com/

http://arduino.cc/en/Reference/Ethernet and
[26] http://www.arduino.cc/playground/Code/Spi, respectively.

http://www.adafruit.com/index.php?main_page=product_info&cPath=17_21&products_id=201
http://www.sparkfun.com/products/8606
http://www.makershed.com/ProductDetails.asp?ProductCode=JM691104
http://www.adafruit.com/products/418
https://www.adafruit.com/products/70
http://git-scm.com/
http://arduino.cc/en/Reference/Ethernet
http://www.arduino.cc/playground/Code/Spi

[27] http://code.google.com/p/tinkerit/source/browse/trunk/Ethernet2 +library/Ett

28] http://gkaindl.com/software/arduino-ethernet

Copyright © 2012, The Pragmatic Bookshelf.

http://code.google.com/p/tinkerit/source/browse/trunk/Ethernet2+library/Ethernet2/
http://gkaindl.com/software/arduino-ethernet

Chapter 4

Electric Guard Dog

Remember the last time you visited a home with a big dog? Did hearing the
canine barking at the sound of a doorbell make you think twice before entering
the premises? Most dog owners appreciate the vigilant home surveillance that
their pets provide. These furry friends have a knack of detecting motion and
springing immediately into action, barking and bumping their snouts against
window curtains and doors in hyperactive effort to see who or what is outside.

With the Electric Guard Dog, you will be able to derive a similar security benefit
minus the hassles of cleaning up dog hair afterward (Figure 5, Deter unwanted
visitors with the Electric Guard Dog).

Figure 5. Deter unwanted visitors with the Electric Guard Dog.

This project combines the Arduino board with a wave shield, a Passive InfraRed

(PIR) sensor, and a servo motor. When programmed and activated, the assembly
will give the illusion of an angry dog eager to pounce on an unwanted trespasser.
A small rod attached to the arms of a servo motor will bob up and down when
the servo rotates. A wad of cotton cloth attached to the other end of the rod will
be positioned against a window curtain. When motion is detected, the servo will
rotate, moving the rod up and down. The cloth attached to the other end of the
rod will bump against the curtain in time with random barks and growls coming
from a speaker plugged into the wave shield. This sound and motion will give
the illusion of a noisy dog trying to poke and prod with its nose behind a door or
window curtain.

The completed project is fully portable, since the Electric Guard Dog can be
positioned in any doorway, window, or room that you want to get someone or
something’s attention when the motion detector is triggered.

4.1 What You Need

This project requires only a few components. The total cost for all the parts
should be under a hundred dollars. But since all the parts can be reused in other
projects in this book and in future DIY efforts, it is a very reasonable investment
consideration. To construct an Electric Guard Dog, you will need the following

(see Figure 6, Electric Guard Dog parts):

Figure 6. Electric Guard Dog parts

1. An Arduino Uno

2. An Adafruit music and sound add-on pack for Arduino (includes wave
shield, speaker, wire, and SD card)[29]

3. A high-torque standard servo[30]

4. A Passive InfraRed (PIR) motion sensor

5. A 9-volt power supply to power the Arduino once untethered from the USB
development cable

6. A sturdy wooden rod with cotton or rubber affixed to the tip to serve as a
surface-protecting end-cap

7. Wire, twist ties, or rubber bands to affix the wooden rod to the servo gear

You will also need a standard A-B USB cable to connect the Arduino to the
computer. The servo can be purchased at a local hobby shop, and the PIR can be
purchased from a number of electronic parts retailers, including Fry’s and Radio
Shack, as well as from online electronics retailers like Adafruit or Sparkfun.

Wy
© Is There an Arduino Shield That Can Play MP3 Files?

Yes! Electronics project retailer Sparkfun sells an Arduino board called the MP3 shield that is similar
in function to Adafruit’s wave shield.[]31] However, due to the differences in the libraries used, I will
focus on the wave shield implementation and leave it to our more adventurous readers to pursue
Sparkfun’s MP3-based alternative on their own. And for those who need an audio shield that plays
even more sound file formats like Windows Media Audio, MIDI, and Ogg Vorbis, the Maker Shed
sells the Seeed Music Shield, which nicely integrates audio file playback capabilities in a well-
designed shield.[32]

Let’s start by connecting the project’s three main components to make them
collectively act in a more aggressive manner.

4.2 Building the Solution

This is one of the easier projects in the book, since it relies entirely on the
Arduino, an add-on shield, a sensor, and a servo motor. When constructed, the
completed assembly should look similar to the one shown in Figure 7, An
Electronic Guard Dog. Here’s how we will build it:

1. Attach an Adafruit wave shield to the Arduino.

2. Connect a PIR to the wave shield’s power, ground, and one of the available
digital pins.

3. Connect a servo to the wave shield’s power, ground, and another one of the
available digital pins.

4. Download additional Arduino libraries that allow the wave shield to be
easily controlled while preventing resource conflicts with sending
instructions simultaneously to the servo.

5. Write a sketch that randomly moves the servo and plays back a snippet of
audio when motion is detected by the PIR.

Figure 7. An Electronic Guard Dog

If you haven’t already assembled and tested your wave shield, follow Ladyada’s
instructions on how to do so.[33] When you have confirmed that it works, we
can enhance the board by attaching the PIR sensor and servo motor actuator to
the available wave shield’s pins.

4.3 Dog Assembly

Figure 8. Wiring diagram for the Electric Guard Dog

Take a look at the schematic in Figure 8, Wiring diagram for the Electric Guard
Dog. The graphic shows wiring plugging into the wave shield. The wave shield
is stacked on top of the Arduino board. Note that the wave shield uses several of
the pins for its own use to interact with the Arduino, which is why not all
passthrough pins are available for the sketch. Closely follow the wiring diagram
and you should not have a problem.

Attach the positive lead of the PIR to the 3.3v pin on the wave shield. Connect
the negative lead to one of the wave shield’s available ground pins. Then attach

the control wire (the middle pin/wire on the PIR) to the wave shield’s digital pin
12.

Next, attach the servo’s positive wire to the wave shield’s 5v pin. Connect the
negative lead to the wave shield’s other available ground pin. Finally, connect
the control wire to the wave shield’s digital pin 11.

For brief testing purposes, you can attach male pins to the wires and plug them
directly into the sockets on the wave shield. More reliable connections can be
achieved by using either male or female header pins instead. These can be
obtained directly from various Arduino board suppliers. If you plan on using the
wave shield exclusively for this project, you can solder the wiring permanently
to the shield for the most stable electrical connection possible.

There is one more step we should take before writing the sketch. We need to
either record and digitize a dog growling and barking in various ways or legally
download audio samples from the Internet of snarling, barking dog sounds.

The first option takes more time and requires access to a big dog that can bark,
snarl, and growl on command—with a microphone near its toothy yapper, no
less! While this requires a bit more extra work, the results produce a more
consistent and realistic effect. And because you know the source, playback
generates a more meaningful audio cue.

Vi
< How Does a PIR Sensor Work?

A PIR detects motion by comparing two samples of infrared radiation being emitted by a body
warmer than the background environment it is moving against. When either side of the sensor detects
a greater value than the other, it sends a signal to the digital out pin that motion has been detected. The
IR sensor at the heart of a PIR is typically covered by a dome-shaped lens that helps to condense and
focus light so that it is much easier for the sensor to detect infrared variations, and thus, motion.

For a more detailed explanation of the theory behind PIRs, visit Ladyada’s informative web page on
the subject.[34]

The second option of searching on the Internet for a variety of angry dog audio

samples is more convenient but rarely produces a consistent and believable
overall effect. This is especially true when the samples are acquired from a
variety of dog breeds. How can a dog have the toothy snarl of a Doberman one
minute and the yapping of a miniature poodle the next? Also, downloading audio
samples from the Internet has copyright implications that have to be respected.
One website that I recommend visiting is the Freesound Project,[35] which
features a number of samples available under the Creative Commons Sampling
Plus license.

After you have obtained five audio clips using either approach, you need to
convert them to a format the wave shield can interpret. Based on the conversion
instructions on Ladyada’s website,[36] samples must not exceed a 22KHz 16-bit
mono PCM (WAV) format. You want the highest audio quality possible, and
there should be plenty of space on the SD card to store them. The audio clips
you select for the project should not exceed five seconds in duration so they
appear more synchronized with the servo motion when the audio is played back.

You can use an audio editor like Audacity to import and convert and save your
audio clips to the correct format.[37] Make sure they are compatible by copying
the converted files to the wave shield’s SD card and running the dap_hc.pde sketch
posted on Ladyada’s website.[38] Note that we’re going to make one change to
Ladyada’s wave shield demo sketch. Instead of the newer wavehc library it uses,
we are going to use the older AF wave library. That way, we can use Arduino
community forum member avandalen’s MediaPlayer library[39]—it makes
working with wave shield sound files far easier. We will take a closer look at this
library and another Arduino community contributor’s library for servos when we
write the sketch in the next section.

4.4 Dog Training

The sketch we write will monitor the PIR for any motion events. If movement is
detected, the shield will randomly play one of five different audio files stored on
the wave shield’s SD card. Simultaneously, the servo motor rotates up to 150
degrees, depending on the sound effect being played back. Attach a wooden rod
to the servo gear and the servo’s rotation will move the rod up and down. When
the rod is positioned behind a curtain, it will give the illusion of a dog’s snout
attempting to nudge the curtain aside so it can see who’s at the door or window.

To begin, we need to include the MediaPlayer.h header file along with its two
dependencies, pgmspace.h (part of a memory management library included in the
Arduino’s standard installation) and util.h (part of the original wave shield’s
AF_Wave library). Because the MediaPlayer class relies on the AF_wave library,

make sure you have already downloaded, unzipped, and copied the
uncompressed AF_Wave folder into the Arduino’s libraries folder.[40]

Next, create a new sketch in the Arduino IDE called ElectricGuardDog. Download
the MediaPlayer library from the Arduino playground website;[41] extract the
zip archive; and place the unzipped MediaPlayer.h, MediaPlayer.pde, and
MediaPlayerTestFunctions.pde files into the ElectricGuardDog folder created by the
Arduino IDE when it created the ElectricGuardDog.pde file. If you downloaded the
project files for the book, the Mediaplayer library file dependencies have already
been prebundled for you. The Mediaplayer library allows us to control audio file
playback very easily.

We will also need to call upon another custom library to operate the servo motor.
If you try to compile the sketch using the standard Arduino Servo class, the
program will fail with this error:

Servo/Servo.cpp.o: In function '__vector_11'":
/Applications/Arduino.app/Contents/Resources/Java/libraries/Servo/Servo.cpp:103:
multiple definition of °__vector_11'

AF_Wave/wave.cpp.o:/Applications/Arduino.app/

Contents/Resources/Java/libraries/AF_Wave/wave.cpp:33: first defined here

What’s going on here? The AF_ Wave library is taking over the vector interrupt as
the standard Servo library. Fortunately for us, Arduino community contributor
Michael Margolis has written a library that gives the Arduino the ability to
control up to eight servo motors simultaneously. By doing so, his library also
circumvents the duplicate resource problem exhibited by the original Servo
library when combined with a wave shield.

Download the ServoTimer?2 library,[42] unzip it, and copy the ServoTimer2 folder
into the Arduino libraries folder. Keep in mind that each time you add a new
library to the Arduino libraries folder, you need to restart the Arduino IDE so the
Arduino’s avr-gcc compiler will recognize it.

After the wave shield’s AF_ Wave and servo motor’s ServoTimer2 library

dependencies have been satisfied, add these references to the beginning of the
sketch:

#include <avr/pgmspace.h>
#include "util.h"
#include "MediaPlayer.h"
#include <ServoTimer2.h>

Create several variables to store Arduino pin assignments and sensor/actuator
starting values.

int ledPin = 13; // on board LED

int inputPin = 12; // input pin for the PIR sensor

int pirStatus = LOW; // set to LOW (no motion detected)

int pirValue = 0; // variable for reading inputPin status
int servoposition = 0; // starting position of the servo

Next, create two objects constructed from the MediaPlayer and ServoTimer2
libraries to more easily manipulate the servo motor and audio playback.

http://media.pragprog.com/titles/mrhome/code/ElectricGuardDog/ElectricGuardDog.pde
http://media.pragprog.com/titles/mrhome/code/ElectricGuardDog/ElectricGuardDog.pde

ServoTimer2 theservo; // create servo object from the ServoTimer2 class
MediaPlayer mediaPlayer; // create mediaplayer object
// from the MediaPlayer class

Assign the variables we created to the Arduino pinModes in the sketch’s setup()
routine. Establish a connection to the Arduino IDE serial window to help
monitor the motion detection and audio playback events. Call the Arduino’s
randomSeed() function to seed the Arduino’s random number generator. By polling
the value of the Arduino’s analog pin 0, we can generate a better pseudorandom
number based on the electrical noise on that pin.

void setup() {
pinMode(ledPin, OUTPUT); // set pinMode of the onboard LED to OUTPUT
pinMode(inputPin, INPUT); // set PIR inputPin and listen to it as INPUT
theservo.attach(7); // attach servo motor digital output to pin 7
randomSeed(analogRead(0)); // seed the Arduino random number generator
Serial.begin(9600);

With the library, variable, object, and setup initialization out of the way, we can
now write the main loop of the sketch. Essentially, we need to poll the PIR every
second for any state changes. If the PIR detects motion, it will send a HIGH
signal on pin 12. When this condition is met, we power the onboard LED and
send a motion detection message to the Arduino IDE’s serial window.

Next, we generate a random number between 1 and 5 based on the seed we
created earlier. Based on the value generated, we then play back the designated
audio event and move the servo motor a predefined amount of rotation. After
that, we wait a second before returning the servo to its starting position and run
the loop again. If the PIR fails to detect motion (that is, if the signal on pin 12 is
LOW), we turn off the onboard LED, send a No motion message to the serial
window, stop the audio playback, and set the pirStatus flag to LOW.

void loop(){
pirValue = digitalRead(inputPin); // poll the value of the PIR

http://media.pragprog.com/titles/mrhome/code/ElectricGuardDog/ElectricGuardDog.pde
http://media.pragprog.com/titles/mrhome/code/ElectricGuardDog/ElectricGuardDog.pde
http://media.pragprog.com/titles/mrhome/code/ElectricGuardDog/ElectricGuardDog.pde

if (pirValue == HIGH) { // If motion is detected
digitalWrite(ledPin, HIGH); // turn the onboard LED on
if (pirStatus == LOW) { // Trigger motion

Serial.println("Motion detected");

// Generate a random number between 1 and 5 to match file names

// and play back the file and move the servo varying degrees

switch (random(1,6)) {
case 1:

Serial.println("Playing back 1.WAV");
theservo.write(1250);
mediaPlayer.play("1.WAV");

break;

case 2:

ca

ca

ca

dela
thes
pirsS

}

} else {
digita
if (pi

Seri
medi

Serial.println("Playing back 2.WAV");
theservo.write(1400);
mediaPlayer.play("2.WAV");

break;

se 3:

Serial.println("Playing back 3.WAV");
theservo.write(1600);
mediaPlayer.play("3.WAV");

break;

se 4:

Serial.println("Playing back 4.WAV");
theservo.write(1850);
mediaPlayer.play("4.WAV");

break;

se 5:

Serial.println("Playing back 5.WAV");
theservo.write(2100);
mediaPlayer.play("5.WAV");

break;

y(1000); // wait a second

ervo.write(1000); // return the servo to the start position

tatus = HIGH; // set the pirStatus flag to HIGH to stop
// repeating motion

IWrite(ledPin, LOW); // turn the onboard LED off

rStatus == HIGH){
al.println("No motion");
aPlayer.stop();

pirStatus = LOW; // set the pirStatus flag to LOW to
// prepare it for a motion event

Save the code as ElectricGuardDog.pde and open up the newly created
ElectricGuardDog folder containing the ElectricGuardDog.pde source file. Place the
unzipped MediaPlayer files into the ElectricGuardDog directory. Double-check that
the uncompressed ServoTimer2 library files are in the Arduino libraries directory.

Reopen the Arduino IDE, load up the ElectricGuardDog.pde file, and click the Verify
icon in the Arduino IDE toolbar. If everything compiled without errors, you have
entered the code correctly and placed the dependent library files in the correct
locations. If not, review the error messages to see what dependencies may be
missing and correct accordingly.

With the sketch compiled successfully, we’re ready to test and tweak the code.

4.5 Testing It Out

Place the PIR sensor at a convenient location to test motion detection, download
the sketch, and open the Arduino IDE’s serial window.

Trigger the PIR sensor by waving your hand in front of it. Your guard dog
should react with a random audio clip and servo motion. If you want the servo
motor to rotate differently, modify theservo.write() method calls with values
ranging from 1000 to 2200. This is because the ServoTimer?2 library uses
microseconds instead of the angle of degrees used by the original Servo library
to measure pulse widths. As a result, you may need to experiment to find the
right degree of movement. After getting the hang of the timing based on the size
of the servo you are using, determining the ideal values to elicit the desired
amount of rotation will become second nature.

Now that you have tested and tweaked the servo timing synchronized with the
appropriate audio clip, it’s time to put the finishing touches on the final
placement of the hardware.

4.6 Unleashing the Dog

Consider where the PIR should be mounted. Placing it behind a glass
windowpane to track outdoor movement will not work since the detector cannot
analyze infrared signatures. Ideally, the PIR should be placed in the unobstructed
line of sight of the area being monitored. If it’s just outside your front door,
thread wiring from the PIR mounted above the door to the Arduino/wave shield
mounted in an enclosure inside the house.

Play with the playback audio level. The small speaker that accompanies
Adafruit’s music and sound add-on pack may be adequate for testing, but it’s
hardly loud enough to get the attention of anyone in the next room (let alone
someone who is outdoors). Use the wave shield’s headphone jack and connect it
to a powered speaker, such as a boom box or home stereo. Set the volume loud
enough to get a visitor’s attention.

Attach one end of the wooden rod to the servo wheel using wire, twist ties, or
rubber bands. Cover the other end of the rod with cloth, a cotton ball, or a rubber
cap to protect the surface that the rod’s tip will be bumping against. You can
further embellish the wire frame with a plastic dog snout from a costume store.
Get creative! Just be sure not to attach something so heavy that the servo cannot
generate enough torque to adequately move the attached wire.

Place the servo assembly next to a window curtain, preferably near the entryway.
When the PIR is triggered and the barking audio is played back, the faux
appendage will nudge the curtain and give the illusion of a dog’s nose moving
behind the curtain. From the visitor’s point of view, it will look like an agitated
animal is just behind the door, waiting to pounce. It will take some tweaking to
get right, but once your setup is properly configured, the motion-detected
playback events should look and sound very convincing!

4.7 Next Steps

Here are a couple of other ideas to elevate this project to the next level:

e Replace the dog barking samples with a booming klaxon, a piercing alarm
bell, or science fiction self-destruct sound effects. Swap out the fake dog
snout attached to the servo arm with a laser pen light that sweeps the
entryway. Imagine your front doorway looking like something out of a
science fiction thriller!

¢ Add an ultrasonic rangefinder and alter the reaction of sound and motion
based on the proximity of the movement being captured. As a intruder
comes closer to the sensor, have the volume get louder and the servo move
more erratically. The closer one gets to the sensor, the more agitated the
Electric Guard Dog becomes.

e Upscale your Guard Dog into a super-sized, weatherized garden scarecrow.
Use more powerful stepper motors connected to a higher voltage external
power source. Make a life-size replica of yourself in old coveralls and use
PVC tubing connected to the stepper motors and wire akin to the strings of
a marionette to control the excited motions of the scarecrow’s arms and
legs.

e Reuse your Electric Guard Dog rig on Halloween. Cover in a “ghost” sheet
or configure a mask with hinged jaws attached to servos that greets visitors
with a spooky voice and ethereal movements.

e Combine the Electric Guard Dog with other projects from the book to turn
on lights, send an email, or lock/unlock the door when motion is detected.

Footnotes

[29] http://www.adafruit.com/products/175

[30] http://www.adafruit.com/products/155

http://www.adafruit.com/products/175
http://www.adafruit.com/products/155

[31] http://www.sparkfun.com/products/9736

http://www.makershed.com/ProductDetails.asp?
[32] ProductCode=MKSEEED14

[33] http://www.ladyada.net/make/waveshield/

[34] http://www.ladyada.net/learn/sensors/pir.html

[35] http://www.freesound.org

[36] http://www.ladyada.net/make/waveshield/convert.html

[37] http://audacity.sourceforge.net/

[38] http://www.ladyada.net/make/waveshield/libraryhc.html

[39] http://www.arduino.cc/playground/Main/Mediaplayer

[40] http://www.ladyada.net/media/wavshield/AFWave_18-02-09.zip

[41] http://www.arduino.cc/playground/Main/Mediaplayer

[42] http://www.arduino.cc/playground/uploads/Main/ServoTimer2.zip

Copyright © 2012, The Pragmatic Bookshelf.

http://www.sparkfun.com/products/9736
http://www.makershed.com/ProductDetails.asp?ProductCode=MKSEEED14
http://www.ladyada.net/make/waveshield/
http://www.ladyada.net/learn/sensors/pir.html
http://www.freesound.org
http://www.ladyada.net/make/waveshield/convert.html
http://audacity.sourceforge.net/
http://www.ladyada.net/make/waveshield/libraryhc.html
http://www.arduino.cc/playground/Main/Mediaplayer
http://www.ladyada.net/media/wavshield/AFWave_18-02-09.zip
http://www.arduino.cc/playground/Main/Mediaplayer
http://www.arduino.cc/playground/uploads/Main/ServoTimer2.zip

Tweeting Bird Feeder

Both of my kids are bird lovers. They have had parakeets since they were
toddlers and enjoy watching wild birds nest and feed outside their bedroom
windows. But one of the chores that somehow always slips past us is refilling the
feeders with birdseed. For a variety of reasons, there may be days, sometimes
even weeks, that go by without a refill. Wouldn’t it be so much easier for the
feeder to tell us when it needed to be refilled?

That need was the genesis of inspiration for this project, and what better way to
receive the notification than via a tweet on Twitter. Interested friends and family
members can follow the feeder and know when birds are feeding from it, when it
needs a refill, and when the refill chore has been satisfied. (See Figure 9, Receive
a Twitter notification from your bird feeder.) Since we will already be tracking
the refilling patterns via Twitter, let’s make the feeder broadcasts even more
interesting by adding a homemade sensor on the feeder perch that will record
when birds are enjoying a meal and for how long. Before posting the tweets, we
will timestamp and record these events to a database so we can visualize feeding
patterns over time.

Was April a more ravenous month for the birds compared to July? Are early
mornings a busier time of day than late afternoons? What is the average time
birds perch at the feeder? What are the time intervals between perches? How
frequently does the feeder need to be refilled with seed? With the Tweeting Bird
Feeder, you will be able to take on the role of field researcher to discover these
and other feeding behavior questions. It’s time to fly!

Figure 9. Receive a Twitter notification from your bird feeder ...when
birds are perching, as well as when seed needs replenishing.

5.1 What You Need

Since this will be our first outdoor project, the equipment costs are more
expensive for several reasons. First, unless you are willing to drill holes through
your walls or leave a window or door open to run an Ethernet cable to the feeder,
we will need an untethered way to broadcast sensor events. Fortunately, a low-
power and relatively low-cost option exists in the form of XBee radios. While
these take a little extra effort to configure initially, they are fairly reliable, easy to
communicate with, and don’t require much attention once operational.

Second, while we could use the standard size Arduino Uno (as shown in the
wiring diagrams throughout this chapter), it might prove to be too long and/or
too wide to conveniently fit into a typical bird feeder. Consequently, I
recommend spending a few extra dollars on an Arduino Nano. The Nano is
better suited to match the feeder’s space constraints. The nice thing about the
Nano is that the pin configurations and the hardware are nearly identical to that
of its bigger brother, and the Nano delivers all that Arduino goodness in a
package within a much smaller footprint.

Figure 10. Tweeting Bird Feeder parts

Third, while it is feasible to power the electronics via a long extension cord
plugged into an outdoor outlet akin to a holiday lighting scenario, such a
configuration is not a self-contained system. Besides, it would be appropriate to
incorporate a greener energy option to be kinder to our environment.

Finally, due to the need to protect the electronics from the elements, we will
need to do a good job weatherizing our assembly. Here’s the shopping list (refer
to the photo in Figure 10, Tweeting Bird Feeder parts):

1. An Arduino Uno or an Arduino Nano[43]
2. Two XBee radios with adapter kits and FTDI connector cable[44]

3. A photocell

4. A strip of aluminum foil
5. A piece of wire

6. A small solar panel with built-in rechargeable battery and USB connector,
such as those provided by Solio[45]

7. One 10k ohm resistor and one 10M ohm resistor—verify that the color
bands on the resistors are brown, black, orange, and gold for the 10k ohm
and brown, black, blue, and gold for the 10M ohm resistors. Refer to Figure
11, Tweeting Bird Feeder resistors. Also shown in the photo is the photocell
(also referred to as a CdS photoresistor).

Figure 11. Tweeting Bird Feeder resistors

8. A bird feeder with a large enough seed cavity to house the weatherized
Nano and XBee assembly

9. A computer (not pictured), preferably Linux or Mac-based, with Python 2.6
or higher installed to process incoming messages from the bird feeder

If you opt to use the Arduino Nano in place of the Arduino Uno, you will also
need a standard A to Mini-B USB cable (not pictured) to connect the Arduino
Nano to the computer. Additionally, since the Arduino Nano uses male pins for
wiring connections instead of the female headers found on an Arduino Uno, you
will need female jumper wires (not shown) instead of standard wires. This will
allow you to more easily attach wires to the Nano’s pins without having to solder

the wiring connections in place.

This project is a more complex than the Water Level Notifier, and getting the
XBee radios working reliably is the trickiest part. Still, it’s worth the effort since
you will not only have a cool twenty-first-century high-tech bird feeder, but you
will also be able to reuse the XBee radio setup in several other projects. Ready to
roll up your sleeves? Then let’s get to it!

5.2 Building the Solution

Assembling the hardware to fit snuggly inside the feeder may require some
ingenuity, especially if the bird feeder doesn’t offer much space inside the seed
container. Before we start cramming electronics into the feeder, we first need to
make sure our components work as expected.

1. We will start with the easy part of connecting the aluminum foil capacitive
sensor to the Arduino and writing a function that will send a message to the
serial window (and eventually the serial port of the attached XBee radio)
when the sensor is triggered.

2. Next, we will hook up the photocell to the Arduino and write the code for it
to react to changes in light.

3. Then we will pair the two XBee radios and transmit these events from the
XBee radio attached to the Arduino to the other XBee radio tethered to a
computer via an FTDI USB cable.

4. And finally, we will write a Python script that will capture the data into an
SQLite database and format and transmit the messages to be posted on
Twitter.

Once everything is working, we will compact the Arduino (preferably the
Nano)+XBee+perch resistor+photocell assembly into a weatherized package,
house it in the feeder, fill the feeder with seed, and go outside for a live field test.

5.3 The Perch Sensor

Bird feeders come in different shapes and sizes. I opted to go with a low-tech
solution for determining when a bird lands on the feeder perch. While it is
certainly possible to construct an elaborate pressure switch mechanism, the time
and expense required to implement it seems like a lot of work just to detect when
something grips the perch. Instead, we can monitor fluctuations in electrical
capacitance.

Cover the feeder perch with aluminum foil, attach a wire from the foil to a
resistor connected to the digital pins on the Arduino. By measuring baseline
values and fluctuations detected when a bird lands on this sensor, we can
establish a threshold value to determine when a landing message should be
transmitted.

Building the Sensor

Building and testing the perch sensor is the easiest part of this project. Take a
piece of aluminum foil, flatten it to half the size of a gum stick wrapper, and
wrap it across the bird perch. Then take a 10M ohm resistor and insert one end
into the Arduino’s digital pin 7 and the other end in digital pin 10. Then connect
a wire from the foil to the resistor lead that is connected to the Arduino’s digital
pin 7. For the wiring diagram, refer to Figure 12, Wiring up a capacitive sensor.

= ;: Arduino " PuRg

-

Figure 12. Wiring up a capacitive sensor

Programming the Sensor

Connect the Arduino to your computer and fire up the Arduino IDE to write the
sensing code. Like the Water Level Notifier project, we will write code that we
will use to do the following:

1. Display the capacitive sensor’s electrical values to the Arduino IDE’s serial
monitor window.

2. Identify the baseline electrical value of the sensor.
3. Alter the flow of current when placing a finger on the sensor.
4. Record the new value to use for our alert trigger condition.

In order to more easily and programmatically detect the electrical changes that
occur when something like a finger or a bird lands on the foil, we will call upon
the help of Arduino enthusiast Paul Badger. Paul wrote an Arduino library that
makes measuring changes in capacitive sensors like the foil one we constructed
for this project a breeze. Called the Capacitive Sensing library,[46] the library

gives Arduino programmers the ability to turn two or more Arduino pins into a
capacitive sensor that can be used to sense the electrical capacitance of a body. A
human body is considerably larger than a bird and will therefore create a much
larger deflected value. Nevertheless, a bird also has measurable electrical
capacitance, and that is the threshold value we will attempt to refine in our
program.

Download this library, uncompress its contents, and copy it into your
Arduino’slibraries folder. For more details, refer to Appendix 1, Installing
Arduino Libraries.

Create a new Arduino project and use the # include CapSense.h;.

Due to the difference in size and surface area touching the foil, a bird will have a
very different value than that of a person. If possible, measure the value
difference with a bird. Fortunately my kids have pet parakeets, and these birds
were all too eager to be test subjects in exchange for the seed supplied by the
feeder. My test measurements concluded that the baseline value varied between
900 and 1400, and the bird’s capacitance increased that value to more than 1500.
Using these values, we can use the same type of conditional code from the Water
Level Notifier project to raise and reset the bird landing and departure
notifications.

We will write the code that will load the CapSense library and capture and
display the capacitive values to the serial monitor window.

#include <CapSense.h>

#define ON_PERCH 1500
#define CAP_SENSE 30
#define ONBOARD_LED 13

CapSense foil_sensor = CapSense(10,7); // capacitive sensor
// resistor bridging digital pins 10 and 7,
// wire attached to pin 7 side of resistor

int perch_value

byte perch_state

http://media.pragprog.com/titles/mrhome/code/TweetingBirdFeeder/BirdPerchTest.pde

void setup()

{
// for serial window debugging
Serial.begin(9600);
// set pin for onboard led
pinMode (ONBOARD_LED, OUTPUT);
b

void SendPerchAlert(int perch_value, int perch_state)
{
digitalWrite(ONBOARD_LED, perch_state ? HIGH : LOW);
if (perch_state)
Serial.print("Perch arrival event, perch_value=");
else
Serial.print("Perch departure event, perch_value=");
Serial.println(perch_value);

void loop() {
// wait a second each loop iteration
delay(1000);

// poll foil perch value
perch_value = foil_sensor.capSense(CAP_SENSE);

switch (perch_state)
{

case 0: // no bird currently on the perch
if (perch_value >= ON_PERCH)

{
perch_state = 1;
SendPerchAlert(perch_value, perch_state);
}
break;

case 1: // bird currently on the perch
if (perch_value < ON_PERCH)

{
perch_state = 0;
SendPerchAlert(perch_value, perch_state);
}
break;

Note the defined ON_PERCH value of 1500 to compare against the recorded
perch_value. Due to variations in the conductivity and surface area of your foil
sensor, you may need to tweak the ON_PERCH threshold value just like you did for

the Water Level Notifier project so that it works best for your configuration.
Also note the value of 30 assigned to the CAP_SENSE constant. This is the number

of samples to poll during the capacitive measurement cycle.

Now that we have a working bird perch sensor, we need a way for the feeder to
alert us when it is running low on seed. How will we do this? A photocell can
help.

5.4 The Seed Sensor

A photocell measures light intensity, with higher intensity correlating with higher
current and lower intensity with lower current. For a more detailed explanation
and tutorial on photocells, visit Ladyada’s ever-helpful website.[47] By placing
the photocells at a level beneath the seeds poured into the feeder, we can detect
when the seed level dips below the sensor, exposing it to more light and thereby
alerting us that the feeder needs to be refilled.

Before drilling holes into the feeder for placement of the photocell, we need to
write some code and test it using the same approach that we did for our
homemade foil resistor.

Connect one of the photocell leads to the Arduino 5v pin and connect the other
photocell lead to the Arduino analog pin 0. Then bridge a 10k ohm resistor
between the Arduino analog pin 0 and the Arduino ground pin, as shown in
Figure 13, Wiring diagram for the photocell test. Does this electrical pattern look
familiar? Yep, it’s the same wiring configuration used previously with Arduino
sensors in this book. This is a frequent pattern for various types of sensors that
connect with the Arduino.

i
-

18 Th 5 3
DIGITAL
E E EE E
= N - = 3

: ,: Arduino = Pukgy

Figure 13. Wiring diagram for the photocell test

With the photocell connected, connect the Arduino to the computer via the USB
serial cable and launch the Arduino IDE. Using the same technique used for the
foil switch, monitor analog pin 0 values in the Arduino IDE’s serial monitor
window and capture baseline values for when the sensor is bathed in ambient,
standard lighting conditions. Then cover the sensor with your finger to block
incoming light. Note the difference in value.

Just as we did for the capacitive test, we will write the same type of procedures
and conditional statements to test for luminosity thresholds. Indeed, you could
copy and paste code from the foil test and simply change variable names and
connected pin assignments to create the working program.

#define SEED 500
#define ONBOARD_LED 13
#define PHOTOCELL_SENSOR 0
int seed_value = 0;

byte seed_state = 0;
void setup()

{
// for serial window debugging
Serial.begin(9600);
// set pin for onboard led
pinMode (ONBOARD_LED, OUTPUT);
¥

void SendSeedAlert(int seed_value, int seed_state)

{
digitalWrite(ONBOARD_LED, seed_state ? HIGH : LOW);
if (seed_state)
Serial.print("Refill seed, seed_value=");
else
Serial.print("Seed refilled, seed_value=");
Serial.println(seed_value);
}

void loop() {
// wait a second each loop iteration
delay(1000);

http://media.pragprog.com/titles/mrhome/code/TweetingBirdFeeder/SeedPhotocellTest.pde

// poll photocell value for seeds
seed_value = analogRead(PHOTOCELL_SENSOR);

switch (seed_state)

{

case 0: // bird feeder seed filled
if (seed_value >= SEED)

{
seed_state = 1;
SendSeedAlert(seed_value, seed_state);
}
break;

case 1: // bird feeder seed empty
if (seed_value < SEED)

{
seed_state = 0;
SendSeedAlert(seed_value, seed_state);
}
break;

Measuring and assigning the defined SEeD threshold value for the photocell is
much easier and more reliable than the capacitive foil test we did earlier. While
you can use your finger to cover up the photocell and measure the value change,
it is more authentic to test with real seed. If you don’t want to drill holes in your
bird feeder to set the photocell just yet, use a paper cup and place the photocell
toward the bottom of the cup.

Similar to the calibration procedure we used in the Water Level Notifier project,
add these lines after the seed_value = analogRead(PHOTOCELL_SENSOR); request in the

sketch’s main program loop:

Serial.print("seed_value=");
Serial.println(seed_value);

Record the seed_value starting value, then fill the cup with seed and measure the
new value. Use these values to set the starting and threshold values for the
photocell.

If you do not see any change, check your wiring and try again. In my tests with
the photocell, the baseline value fluctuated between 450 and 550. It reported
below 100 when my finger covered the sensor. Use whatever upper and lower
limit values you recorded with your tests, keeping in mind that they will need to
be recalibrated once the sensor is mounted inside the feeder.

Now that monitoring is working for both the perch and light sensors, we need a
way to communicate when those sensor thresholds have been exceeded. It’s not
very practical to run an Ethernet cable from an indoor network hub to an outdoor
tree limb. Not to mention that trying to fit a bulky Arduino+Ethernet shield
assembly into the confined space of a bird feeder would be a challenge. We will
use the convenience of low-power wireless communication to transmit these
sensor notifications to an indoor computer. Then we will use that computer’s
faster processing and larger storage capacity to analyze and act upon the data
received.

5.5 Going Wireless

Although more ubiquitous 802.11b/g Wi-Fi shields exist for the Arduino (such
as Sparkfun’s WiFly Shield), the most prevalent means of Arduino wireless
communication is via XBee radios. The initial outlay for a set of XBee devices
can be a bit pricey. This is because in addition to the XBee radios, you also need
an FTDI USB cable to connect one of the radios to a computer to act as a
wireless serial port.

The other XBee is typically connected to an Arduino. And to make it easier to
make these connections, additional kits are available to mount the XBee radios
to an assembly that better exposes the connection pins while also displaying data
transfers via onboard LEDs. Such visual indicators can be quite helpful when
debugging or troubleshooting a paired XBee connection. Nevertheless, the fact
that XBees offer a low-power and long-range (up to 150 feet) solution coupled
with easy connectivity and data transfer protocol make them an ideal wireless
technology for our project needs.

In order to more easily interface with the XBee radios, Adafruit has designed an
adapter kit that “doesn’t suck,” but it does require you to solder a few small
components onto the adapter board. Assemble the adapter following the
instructions posted on Ladyada’s website.[48]

Once assembled, configuring and pairing the XBee radios isn’t too difficult,
though one of the more helpful utilities used to configure them only runs on
Windows.

Using the screen Utility
A helpful serial monitoring utility for *nix-based platforms like Mac OS X and
Linux is the screen application. To use screen in OS X, determine the serial port
that the FTDI USB cable is using by launching the Arduino IDE. Select Serial Port
from the Arduino IDE Tools menu to identify the serial port assigned to it.

In my case, the device name of the FTDI USB-to-XBee adapter connection was
devtty.usbserial-A6003SHc¢, though yours may be different, depending on other
devices connected to your computer. Open up the Terminal application and type

screen devtty.YOURDEVICE 9600. This will open the serial port and allow you to enter
and receive characters at a communication rate of 9600 baud. To gracefully exit
the screen utility, press Control-A followed by Control-\.

Following the instructions for the XBee point-to-point sample program available
on Ladyada’s web page,[49] attach the power, ground (Gnd), receive (RX), and
transmit (TX) pins of one of the adapter-mounted XBees to the Arduino’s 5V,
Gnd, digital 2, and digital 3 pins. Plug the Arduino into your computer, upload
the test program, open up the Arduino serial window, and make sure it is set to a
rate of 9600 baud. Leave the Arduino plugged in and attach the other paired
XBee to your computer via the FTDI USB cable. Open up a serial terminal
session: Hyperterminal in Windows, the screen on a Mac, or various serial

communication programs such as Minicom for Linux.[50]

Once you have established a serial connection, type in a few characters in your
serial application’s input screen. If your XBee radios are properly configured,
you will see those typed characters appear in the Arduino serial window. If you
connected the XBees to the Arduino and the FTDI cable using XBee adapters,

you should also see the adapter’s green transmit and red receive LEDs blinking
as the characters are wirelessly transmitted from one XBee radio to the other.

If you do not see the characters being displayed on the receiving window, review
the XBee radio wiring to the appropriate Arduino ports. You can also swap the
radios to verify both are recognized using the FTDI USB connection. Type an AT
in your serial application’s terminal window and verify that it returns an OK
acknowledgment.

If the XBees still don’t seem to be communicating with one another, contact the
retailer you purchased them from for further assistance.

With the XBee radios successfully paired, we will reconnect both the photocell
and foil resistor to the XBee-outfitted Arduino and combine the code that will
receive the sensor’s trigger condition events. For the complete wiring diagram,

refer to Figure 14, Tweeting bird feeder with sensors and XBee radio attached to
Arduino.

Figure 14. Tweeting bird feeder with sensors and XBee radio attached to
Arduino

Consider using a breadboard, or solder the resistors along with the wires being
connected to the Arduino pins. If you opt for a breadboard for testing purposes,
keep in mind that it probably won’t fit in the feeder, so be prepared to solder the
wiring permanently in place after the tests prove successful. And depending on
the orientation of the Arduino Uno or Nano as it is positioned into the bird
feeder, you may need to use straight header pins on the XBee adapter board
instead of the default right-angled pins that accompany the kit. The goal is to
make sure everything fits inside the feeder in a secure and serviceable way. And

recall that unlike the female headers on an Arduino Uno, the Arduino Nano uses
male pins instead. As such, you will need to use female jumper wires to better
accommodate the connections to the Nano’s male pins.

Finishing the Sketch

We are going to poll both the foil and photocell sensors for activity, first to the
Arduino IDE serial window, then—with one small replacement in our code—to
the XBees. Essentially, we are simply going to combine the threshold code for
the foil and photocell that we tested earlier while sending threshold alerts to the
serial port of the XBee radio. Adding this logic to what we already wrote to test
the perch and seed status, we can complete the sketch for the project.

#include <CapSense.h>;
#include <NewSoftSerial.h>

#define ON_PERCH 1500
#define SEED 500
#define CAP_SENSE 30
#define ONBOARD_LED 13

#define PHOTOCELL_SENSOR 0

// Set the XBee serial transmit/receive digital pins

NewSoftSerial XBeeSerial = NewSoftSerial(2, 3);

CapSense foil_sensor = CapSense(10,7); // capacitive sensor
// resistor bridging digital pins 10 and 7,
// wire attached to pin 7 side of resistor

int perch_value

byte perch_state

int seed_value

o O O o

byte seed_state

void setup()

{
// for serial window debugging
Serial.begin(9600);

// for XBee transmission
XBeeSerial.begin(9600);

// set pin for onboard led
pinMode (ONBOARD_LED, OUTPUT);

http://media.pragprog.com/titles/mrhome/code/TweetingBirdFeeder/TweetingBirdFeeder.pde

void SendPerchAlert(int perch_value, int perch_state)

{
digitalWrite(ONBOARD_LED, perch_state ? HIGH : LOW);
if (perch_state)

{
XBeeSerial.println("arrived");
Serial.print("Perch arrival event, perch_value=");
}
else
{
XBeeSerial.println("departed");
Serial.print("Perch departure event, perch_value=");
¥

Serial.println(perch_value);

void SendSeedAlert(int seed_value, int seed_state)

{
digitalWrite(ONBOARD_LED, seed_state ? HIGH : LOW);
if (seed_state)

{
XBeeSerial.println("refill");
Serial.print("Refill seed, seed_value=");
}
else
{
XBeeSerial.println("seedOK");
Serial.print("Seed refilled, seed_value=");
}

Serial.println(seed_value);

void loop() {
// wait a second each loop iteration
delay(1000);

// poll foil perch value
perch_value = foil_sensor.capSense(CAP_SENSE);

// poll photocell value for seeds
seed_value = analogRead(PHOTOCELL_SENSOR);

switch (perch_state)

{
case 0: // no bird currently on the perch
if (perch_value >= ON_PERCH)

{
perch_state = 1;
SendPerchAlert(perch_value, perch_state);
}
break;

case 1: // bird currently on the perch
if (perch_value < ON_PERCH)

{
perch_state = 0;
SendPerchAlert(perch_value, perch_state);
}
break;

switch (seed_state)

{

case 0: // bird feeder seed filled
if (seed_value >= SEED)

{
seed_state = 1;
SendSeedAlert(seed_value, seed_state);
}
break;

case 1: // bird feeder seed empty
if (seed_value < SEED)

{
seed_state = 0;
SendSeedAlert(seed_value, seed_state);
}
break;

Note the references to the capacitive sensing and new software serial libraries at
the beginning of the sketch. We initialize the variables that will use references
from those libraries along with our threshold variables. Then we set up the
connections to the serial window and XBee radio along with the Arduino
onboard LED on pin 13. Once initialized, the program simply runs a loop and

waits for the perch or seed thresholds to be exceeded or reset. If a change
condition is detected, the running sketch will transmit these trigger messages to
the Arduino IDE’s serial window as well as to the XBee radio.

With both the foil and photocells correctly reporting their values, redirect serial
output from the Arduino IDE serial window to the XBee attached to the
Arduino. Open up the serial application window to the FTDI-connected XBee,
and if all goes well, the data you saw being displayed in the Arduino IDE serial
window should now be showing up in the FTDI-connected serial application
window on your computer. Isn’t wireless communication cool?

At this point, the hardware for our project is connected and tested and may look
similar to the bird feeder components I assembled in Figure 15, A pet bird can
help out with the testing and debugging of threshold values that trigger perch
landing and departure events.

Figure 15. A pet bird can help out with the testing and debugging of
threshold values that trigger perch landing and departure events.

But before we start packing the hardware into the bird feeder, we need to create
one more crucial component. Using the Python language, we can write a short
program that will listen for bird landings, poll for seed status, and post notable
changes to Twitter. Let’s go write some code.

5.6 Tweeting with Python

A number of different languages capable of accomplishing the tasks of
monitoring and interpreting incoming serial console messages and transmitting
outbound messages to the serial port exist. There are also a number of Twitter
libraries for various programming languages.

Python was chosen for this and several other scripts in the book due to the
language’s

easy-to-follow syntax, its default inclusion in Linux and Mac OS X operating
systems, and its “batteries included” approach to bundling a number of relevant
libraries (such as SQLite) in its base distribution. To learn more about
programming in Python, check out Learning Python [LAO3].

For this project, the basic functionality we need the tweetingbirdfeeder.py Python
script to accomplish is this:

1. Record the date and time when a bird lands and departs from the perch in
the birdfeeding table in the tweetingbirdfeeder database.

2. Record the date and time when seed levels are depleted and replenished in
the seedstatus table, which is also part of the tweetingbirdfeeder database.

3. Listen for inbound and transmit outbound serial messages via the FTDI
cable-connected XBee radio and respond to events by storing the date and
time of their occurrence and condition.

4. Connect to Twitter via OAuth authentication and post changes in bird
feeding and seed level status.

The only additional Python libraries that need to be installed for this project are
pyserial and python-twitter.

Beyond relaying tweets to a designated Twitter account, it would be helpful to

visualize trends in the data we will be tweeting, such as the frequency and
date/time of bird landings and the average time between seed refills. We can then
see how these trends map out over an hour, a day, a month, and a year. To do
this, we will need to capture the data in a structured format.

Configure the Database

Since Python 2.5 and higher supports the SQLite database out of the box, and
because our data needs don’t require an overengineered standalone database
server, SQLite is the ideal choice for the job. While we could have dumped these
values to a plain-text comma separated value (CSV) file, organizing the data into
a structured SQLite file affords us two benefits: First, we will be better prepared
for future data analysis queries. Second, we will have greater flexibility to
capture and manage other types of data events later on simply by adding new
columns to the table.

In order to create a database in sqlite3 file format, we can use the sqlite3

command-line tool. This tool is already installed on Mac OS X. On Linux, it will
most likely need to be retrieved from the distribution’s repository. In the case of
Debian-based distributions like Ubuntu, issuing sudo apt-get install sqlite3 libsglite3-

dev should install the application. Windows users will need to download the
sqlite3.exe utility from the SQLite website.[51]

Once installed, type sqlite3 within a terminal window. This will display
something like the following:

SQLite version 3.7.6

Enter ".help" for instructions

Enter SQL statements terminated with a ";"
sqlite>

Your installation of SQLite may report a different version number.

Next, we will enter the SQL statement to create our new database. To do so, exit
the sglite command shell by typing .q followed by a carriage return at the sqlite>
prompt. Then relaunch the sqlite3 tool, followed by the name of the database to

be opened.

For this project, we will call the database tweetingbirdfeeder, with the filename
tweetingbirdfeeder.sqlite. Because this database file does not yet exist, SQLite will

automatically create the file for us. The database file will be created from the
same directory that you launched the sglite3 tool from. For example, if you
launched sglite3 from your home directory, the database file will be created there.

SQLite Manager
While the SQLite command-line tools provide all you need to create and manage
SQLite databases, it's sometimes easier to work with a graphic user interface.
This is especially applicable if you need to scroll through rows of data in a single
window. Several open source GUI-based SQLite database explorer-style apps
exist. If you are a Mozilla Firefox web browser user, | recommend using the cross-
platform SQLite Manager Firefox plug-in.[52]

Installing the plug-in is easy. From the Firefox’s Tools-»Add-ons menu selection,
search for SQLite Manager and click the Install button. Open SQLite Manager
from Firefox’s Tools—»SQLite Manager menu option. Creating a new database is as
simple as clicking on the New Database icon in the SQLite Manager window
toolbar. Saving and opening SQLite database files is just as easy.

We will create a new table in the tweetingbirdfeeder.sglite database that we will call
birdfeeding with the following structure:

Column Data Type Primary Autoinc? Allow Unique?
Name Key? Null?

id INTEGER YES YES NO YES
time DATETIME NO NO NO NO
event TEXT NO NO NO NO

We can create this table by submitting the following SQL statement to the sqlite

command-line tool:

[~]1$ sqlite3 tweetingbirdfeeder.sqlite

SQLite version 3.7.6

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite> CREATE TABLE "birdfeeding" ("id" INTEGER PRIMARY KEY NOT NULL UNIQUE,
"time" DATETIME NOT NULL,"event" TEXT NOT NULL);

With the birdfeeding table established, we need another table, one that has a
similar structure in the same database and is called seedstatus:

Column Data Type Primary Autoinc? Allow Unique?
Name Key? Null?

id INTEGER YES YES NO YES
time DATETIME NO NO NO NO
event TEXT NO NO NO NO

Just like the birdfeeding table, submitting the following SQL statement to the
sglite command-line tool will generate the desired structure for the seedstatus
table:

[~]1$ sqlite3 tweetingbirdfeeder.sqlite

SQLite version 3.7.6

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite> CREATE TABLE "seedstatus" ("id" INTEGER PRIMARY KEY NOT NULL,
"time" DATETIME NOT NULL ,"event" TEXT NOT NULL);

Now that the database has been defined, we can work on the code to import the
database and Serial and Twitter libraries, then listen for serial events being
generated and timestamp and store these events to the appropriate database table.

We’ll conclude the event capture by posting a tweet of the situation. But before
you can programmatically tweet to Twitter, you need to create a Twitter account

and sign up for a Twitter API key and related OAuth credentials. Let’s go get
ourselves an API key.

Twitter API Credentials

Before sending tweets to Twitter, you need a Twitter account to send them to.
And before you send tweets to Twitter programmatically via a language or
library that supports OAuth,[53] you need to create an application identifier for
the intended Twitter account. While you could use an existing Twitter account, I
prefer creating new accounts whenever a new project demands it. That way,
followers of my existing account are not accosted by tweets of my latest
experiments. It also offers a way to share your application’s tweets selectively.
With these considerations in mind, create a new account and application ID
specifically for the bird feeder project.

Using your new Twitter account credentials, visit http://dev.twitter.com and
select the “Register an app” option. On the New Twitter Application page, enter
a unique name for your application, a description at least ten characters long, and
a valid website for the app. Enter a temporary one if you don’t have a permanent
website from which you will offer your application for download. Then select
Client under Application Type and select Read & Write under Default Access
type. You can upload a custom icon if you like, but it’s not required. Then enter
the CAPTCHA validation and click the Register Application button at the
bottom of the screen. Read and accept the Twitter API Terms of Service to
proceed.

Once your request has been approved, a unique API Key, OAuth Consumer key,
and Consumer secret will be generated. Click the My Access Token menu item
on the right side of the page to access your application’s all important Access
Token (oauth_token) and super-secret Access Token Secret
(oauth_token_secret). Copy these unique codes and store them in a safe, secure
file. You will need these values to programmatically interact with your new
Twitter account. Remember to keep these values a secret! You don’t want any
unscrupulous individuals getting hold of your secret token and using it to spam
your friends and raise the ire of the Twitter community.

http://dev.twitter.com

With a Twitter account and a valid application API key in hand, you can use
these credentials in our Python-based Tweeting Bird Feeder application.

The Python-Twitter Library

Even though we have API access to Twitter, we still need to talk to Twitter from
Python. We can do so with help a little help from the Python-Twitter library.[54]
To install both the Pyserial and Python-Twitter libraries, download the latest
version and execute the standard sudo python setup.py install command. If you’re
installing this library on Mac OS X 10.6 (Snow Leopard) or higher, the
easy_install Python setup tool is preinstalled. However, due to quirks in the 64-bit
libraries, you will need to precede the command with an i386 architecture flag to
install the Python-Twitter library without errors. The complete command for this
is sudo env ARCHFLAGS="-arch i386" easy_install python-twitter.

At last, we have all the accounts configured and dependencies installed, and we
can complete the project by writing the Python script that will listen for
messages on the receiving XBee radio serial port, timestamp the messages, save
them in a database, and post the message to Twitter. Let’s write the Python script
that will codify this process.

import DateTime, Serial port, SQLite3 and Twitter python libraries
from datetime import datetime

import serial

import sqlite3

import twitter

import the os module to clear the terminal window at start of the program
windows uses "cls" while Linux and OS X use the "clear" command
import os
if sys.platform == "win32":
os.system("cls")
else:
os.system("clear")

Connect to the serial port, replacing YOUR_SERIAL_DEVICE with the
name of the serial port of the FTDI cable-attached XBee adapter
XBeePort = serial.Serial('devtty.YOUR_SERIAL_DEVICE', \

http://media.pragprog.com/titles/mrhome/code/TweetingBirdFeeder/tweetingbirdfeeder.py

baudrate = 9600, timeout = 1)

Connect to SQLite database file
sqlconnection = sqlite3.connect("tweetingbirdfeeder.sqlite3")

create database cursor
sqlcursor = sqlconnection.cursor()

Initialize Twitter API object

api = twitter.Api('Your_OAuth_Consumer_Key', 'Your_OAuth_Consumer_Secret', \

'Your_OAuth_Access_Token', 'Your_OAuth_Access_Token_Secret')

def transmit(msg):
Get current date and time and format it accordingly
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

Determine message and assign response parameters

if msg == "arrived":
tweet = "A bird has landed on the perch!"
table = "birdfeeding"

if msg == "departed":
tweet = "A bird has left the perch!”
table = "birdfeeding"

if msg == "refill":
tweet = "The feeder is empty."
table = "seedstatus"
if msg == "seedOK":
tweet = "The feeder has been refilled with seed."
table = "seedstatus"

print "%s - %s" % (timestamp.strftime("%Y-%m-%d %H:%M:%S"), tweet)

Store the event in the SQLite database file

try:
sqlstatement = "INSERT INTO %s (id, time, event) \
VALUES(NULL, \"%s\", \"%s\")" % (table, timestamp, msg)
sqlcursor.execute(sqlstatement)
sqlconnection.commit()

except:
print "Could not store event to the database."
pass

Post message to Twitter
try:
status = api.PostUpdate(msg)

except:
print "Could not post Tweet to Twitter"
pass

Main program loop
try:
while 1:
listen for inbound characters from the feeder-mounted XBee radio
message = XBeePort.readline()

Depending on the type of message is received,
log and tweet it accordingly
if "arrived" in message:

transmit("arrived")

if "departed" in message:
transmit("departed")

if "refill" in message:
transmit("refill")

if "seedOK" in message:
transmit("seed0OK")

except KeyboardInterrupt:
Exit the program when the Control-C keyboard interrupt been detected
print("\nQuitting the Tweeting Bird Feeder Listener Program.\n")
sqlcursor.close()
pass

Once the necessary datetime, serial, sqlite, and twitter libraries are loaded, we clear
the terminal window (sending a cIs for Windows and a clear for any other
operating system), connect to the receiving XBee radio serial port (the XBee that
is attached to the computer via the FTDI cable). Then we connect to the
tweetingbirdfeeder.sqlite3 database file we created earlier and run an infinite while

loop until the Control-C keyboard combination is triggered so we can gracefully

exit the program. If the attached XBee radio receives a message it recognizes,
we call the def transmit(msg) function that parses the msg variable, adds descriptive

text to the event, saves the message to the database, and posts it to Twitter.

With the Arduino running and the XBee radios paired and powered, test the

threshold detections by touching the perch sensor and photocell enough times to
trigger several event transmissions. Assuming no errors were reported in the
terminal window of the running script, open the tweetingbirdfeeder.sqlite3 file in the
SQLite Manager’s Browse and Search window and verify that entries for both
sensors were timestamped when the related events were triggered. If everything
checks out, log into the Twitter account that you used to post the events and
verify that the events appear on the timeline.

We’re almost done. Just a few more hardware assembly steps remain.

5.7 Putting It All Together

In order to make the project fully functional, we need to package up the
Arduino+XBee hardware assembly inside a weatherized, protected layer within
the bird feeder, mount the photocell near the base of the feeder, fill the feeder
with seed, attach the Arduino+XBee hardware to a power source, and place the
feeder outdoors but within range of the paired XBee radio attached to the
computer.

Unless you live in an area with little rainfall, you will need to protect the
electrical assembly from water damage. I have found double bagging the
components in a small plastic freezer bag does a sufficient job of
weatherproofing the Arduino+XBee. However, unless you plan on powering the
electronics with a 9V battery that can be contained within the bundle (it might be
good for short data collection sessions but won’t last very long before its charge
is exhausted), you will need to account for an external cord to attach to the
Arduino so that continuous power can be delivered.

Cutting a small opening in the bag to allow the cable to enter works, but doing
so exposes the insides to potential moisture condensation. To minimize this risk,
tightly wrap the freezer bag and cable exit point with a continuous sheet of
plastic wrap, climbing high enough up the power cord to ensure a good seal that
won’t slip or loosen with weather changes.

Using a weatherized power cord (such as those sold for outdoor decorative
lighting purposes) may be less expensive and easier to test in the short term.
However, environmentally conscious individuals may prefer instead to spend a
bit more money up front for a longer, more sustainable energy alternative in the
form of a photovoltaic power supply.

When searching for an adequate, portable solar power solution, make sure it can
deliver 5 volts, is built for rugged durability, and has a built-in rechargeable
battery when backup power is needed. Products like the Solio Bolt provide a
relatively inexpensive solution for short-term measurements.[55] If you prefer

photovoltaic solutions that offer greater internal battery charging capacities and
voltage, be prepared to spend a bit more for the added capabilities. Companies
like Sunforce Products offer a variety of solar backup power maintainers, trickle
chargers, and controllers designed to take on greater loads.[56]

You should mount the solar panel far enough away from the feeder to gain
maximum sun exposure. If possible, mount the panel at a ninety-degree angle to
the sun for optimal energy capture. Depending on your location and average
level of daylight intensity, you may need to seek alternatives such as consumer-
grade wind turbine chargers or even pedal-powered dynamos.

We have accomplished quite a number of new objectives this project, from using
photocell and homemade sensors and learning how to pair and wirelessly
communicate between XBee-attached hardware to writing a script that records
structured data, responds to events, and submits posts to Twitter via Twitter’s
API. We have also taken into account standalone Arduino+XBee radio energy
requirements and ways to adequately shield our electronics from environmental
changes.

We will reuse these valuable lessons with some of the other projects in the
ensuing chapters.

5.8 Next Steps

The variety of home automation projects using capacitive and photocell sensor
notifications is expansive. Here are just a few ideas to consider pursuing:

e Place an XBee+photocell-equipped Arduino, powered by a rechargeable
battery pack, in your refrigerator or freezer to detect how often and how
long the doors are left open. Use this data to calculate energy expended
each month as a result of these encounters. If such expenditures are
excessive, broadcast emails and/or tweets to cohabitants reminding them of
their growing carbon footprint.

e If groping for a light switch is a frustratingly frequent chore, tweak the
capacitive sensor configuration to be used to turn on basement or garage
lights by touching foil tacked to a wall or to a table-mounted surface.

e Use the variable analog readings of a photocell to measure day-night cycles
and sunny-overcast recordings and map these to seasonal gardening data.
Did planting certain species of flowers, fruits, or vegetables before a certain
time help or hinder their growth? How many days were the plants bathed in
full sunlight compared to overcast or inclement skies?

In addition to these suggestions, there is still plenty of data analysis that can be
done with the collected bird feeder data. Use a Python graphing library like
CairoPlot to help visualize the average duration of and time in between bird
visits.[57] How quickly was seed consumed? How much of an effect did weather
have on feeding times and durations? Does changing the type of seed alter the
duration and frequency of visits?

Consider sharing your tweets with other bird enthusiasts online to expand a
social network of others collecting and sharing their bird feeder data.
Collectively compare patterns across various regions and geographies to infer
population trends, environmental impacts, migration cycles, and other factors to
better understand the habits of our feathered friends.

Footnotes

[43] http://www.makershed.com/ProductDetails.asp?ProductCode=MKGR1

[44] http://www.adafruit.com

[45] http://www.solio.com/chargers/

[46] http://www.arduino.cc/playground/Main/CapSense

[47] http://www.ladyada.net/learn/sensors/cds.html.

[48] http://www.ladyada.net/make/xbee/

[49] http://ladyada.net/make/xbee/point2point.html

[50] http://alioth.debian.org/projects/minicom/

[51] http://www.sqlite.org/download.html

[52] https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/

[53] http://oauth.net/
[54] http://code.google.com/p/python-twitter/

[55] http://www.solio.com/chargers/

[56] http://www.sunforceproducts.com/results.php?CAT D=1

[57] http://cairoplot.sourceforge.net/

Copyright © 2012, The Pragmatic Bookshelf.

http://www.makershed.com/ProductDetails.asp?ProductCode=MKGR1
http://www.adafruit.com
http://www.solio.com/chargers/
http://www.arduino.cc/playground/Main/CapSense
http://www.ladyada.net/learn/sensors/cds.html
http://www.ladyada.net/make/xbee/
http://ladyada.net/make/xbee/point2point.html
http://alioth.debian.org/projects/minicom/
http://www.sqlite.org/download.html
https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/
http://oauth.net/
http://code.google.com/p/python-twitter/
http://www.solio.com/chargers/
http://www.sunforceproducts.com/results.php?CAT_ID=1
http://cairoplot.sourceforge.net/

Package Delivery Detector

There is nothing like that surge of anticipation when coming home after a long
day to discover a package delivery resting outside the front door. Even if it was a
package you were expecting and tracked online with every departure hub, seeing
that parcel safely awaiting your arrival can sometimes feel like receiving a
birthday gift.

Wouldn’t it be even more comforting to know the very moment when your
package arrived versus waiting up to hours later for an email from the courier
confirming the delivery? (See Figure 16, Receive an email from your home
whenever a package arrives) What if the driver accidentally delivered the
package to the wrong location? Say goodbye to those worries. The Package
Delivery Detector will send you an email when a package is left at your
doorstep. You can further filter the notification by delaying the message until the
shipper confirms delivery via its web services.

I One wesk Later,.,

MES,,
(AR
IJ'E_%___A‘{)

o

|l
e
-

Figure 16. Receive an email from your home whenever a package arrives.

This project combines the components we used in Chapter 5, Tweeting Bird
Feeder, with a similar alert monitoring mechanism used in Chapter 4, Electric
Guard Dog. Instead of using a PIR, the Package Delivery Detector will sense
deliveries with a force sensitive resistor. When a box approximating the weight
of a small package (or about half a kilogram) is dropped on top of a delivery pad
containing a force sensitive resistor, the sensor sends a notification via an XBee-
connected serial port. In turn, this notification processes a Python script that logs
the delivery and sends an email notification. Optionally, the delivery notification
can wait an hour and confirm delivery with the courier’s website before
transmitting the verified message.

6.1 What You Need

Most of what you need to build this project has been used by other projects in
the book, with the exception of a force sensitive resistor (sometimes erroneously
referred to as a pressure sensor). Take a look at the complete list of the project’s
components (refer to the photo in Figure 17, Package Delivery Detector parts):

Figure 17. Package Delivery Detector parts

1. An Arduino Diecimila, Nano, or Uno
2. Paired XBee radios and accompanying FTDI cable
3. One 10k ohm resistor

4. A force sensitive resistor,[58] as shown in the photo in Figure 18, Package

Delivery Detector resistors, along with a 10k ohm resistor[59]

5. A 9-volt power supply to power the Arduino once untethered from the USB
development cable

6. Two wood or plastic square tiles, preferably connected together via a wedge
on one side

7. A computer (not pictured), preferably Linux or Mac-based, with Python 2.6
or higher installed to process incoming messages and interrogate popular
logistics firms’ web services

—— q_w_,._._ -

Figure 18. Package Delivery Detector resistors

Depending on the type of Arduino that you opt to use for this project, you will
also need a standard A to B or A to Mini-B USB cable to connect the Arduino to
the computer.

If you have built the other projects in this book up to this point, the Package
Delivery Detector is going to be a relatively easy project to construct. This is
because it’s essentially a variation of the Chapter 5, Tweeting Bird Feeder.
Instead of a light sensor, this project will use a strategically placed force
sensitive resistor. And we will enhance the bird feeder Python script to poll a
popular courier delivery service. Doing so will help certify the authenticity of
the delivery. Let’s get started!

6.2 Building the Solution

The hardware construction for this project closely matches the sensor approach
we built for the Tweeting Bird Feeder project. We will once again call upon the
Python language to script the server-centric interactions, but this script will also
utilize several custom packages to interrogate popular web services offered by
US-based courier companies like Federal Express (FedEx) and United Parcel
Service (UPS). More specifically, we will:

1.

Attach the force sensitive resistor to an available analog pin on the Arduino
and identify a threshold value when weight is applied to the resistor.

Attach the XBee radio to the Arduino and transmit a message to another
XBee radio attached to a computer when the threshold value of the force
sensitive resistor has been exceeded.

When a threshold event has been received, pause execution for ten minutes
to give the courier’s tracking systems an opportunity to update its records.
Then iterate through a database table of known FedEx and UPS in-transit
package tracking numbers. Query these numbers with FedEx and UPS web
services to determine a delivery confirmation match.

If a match is identified, update the tracking number database table with a
delivery confirmation and date/time stamp.

Send an email via Google’s Gmail SMTP mail gateway indicating the time
of the threshold event and any packages that match the delivered status
query. If no tracking number is matched, indicate such in the body of the
email.

Now let’s begin by first assembling the package sensor hardware components,
followed by the software to drive it.

Figure 19. The Package Delivery Detector wiring diagram

6.3 Hardware Assembly

If you already constructed the Tweeting Bird Feeder project, you know how to
connect the XBee and a sensor to the Arduino. If you need a refresher, refer to
Section 5.5, Going Wireless. Instead of attaching the light sensor with the inline
10k ohm resistor to the Arduino’s analog pin, we are going to swap out the light
sensor with a force sensitive resistor. See Figure 19, The Package Delivery
Detector wiring diagram. Wire one of the force sensitive resistor’s leads to the
3.3v power source. Connect the other to analog pin 0. Then bridge the analog 0
wire to ground with a 10k ohm resistor.

The XBee radio attaches in the same way it did in the Tweeting Bird Feeder
project. Namely, connect the XBee’s power lead to the Arduino’s 5.5v output
pin. Wire the XBee’s ground lead to the other available ground pin on the
Arduino. Then connect the XBee’s receive lead to the Arduino’s digital pin 2 and
the XBee’s transmit lead to the Arduino’s digital pin 3. Once everything is
connected, it should look something like Figure 20, A Package Delivery
Detector. Attach the USB cable from the computer to the Arduino’s USB port to
power up the Arduino so we can write, run, and debug the package sensor
sketch.

Figure 20. A Package Delivery Detector

6.4 Writing the Code

There are two code components in this project. The first is the sketch that
monitors when something has been placed on the force sensitive resistor that is
heavy enough to exceed the normal threshold. When that occurs, broadcast the
event along with the value of the force resistor resistor via the XBee soft serial
port.

The second component is a Python script that waits for a threshold event from
the force sensitive resistor monitor. If the threshold has been exceeded, record
the value of the resistor along with the date and time of the event to an SQLite
database. If the database contains a list of known tracking numbers, iterate
through these numbers and interrogate FedEx and UPS web services for a match.
Then send an email containing information about the delivery event as well as
the courier’s package delivery confirmation, if available.

6.5 The Package Delivery Sketch

The code for this sketch is a variation of the code we wrote for the Tweeting
Bird Feeder. One of the neat things about Arduino-centric projects is once you
have written a sketch for a sensor or an actuator, the logic and syntax for the
sketch can frequently be reused. After all, the basic principles of sensors and
actuators are essentially the same—only the type of sensor or motor hardware
and values have changed.

Since we already discussed the majority of the code in this sketch from the
Tweeting Bird Feeder chapter, we’re not going to spend a lot of time reviewing
it. But the one variable worth mentioning is force_value. Like the other sensors we
used in the other projects, you will need to calibrate the force sensitive resistor
for your configuration due to the variety of force sensitive resistors available, the
type of wiring and voltages used, and the way the sensor is wedged in place.

#include <NewSoftSerial.h>

#define FORCE_THRESHOLD 400
#define ONBOARD_LED 13
#define FORCE_SENSOR 0

// Set the XBee serial transmit/receive digital pins
NewSoftSerial XBeeSerial = NewSoftSerial(2, 3);

int force_value = 0;

byte force_state = 0;

void setup()
{

// for serial window debugging
Serial.begin(9600);

// for XBee transmission
XBeeSerial.begin(9600);

// set pin for onboard led
pinMode (ONBOARD_LED, OUTPUT);

http://media.pragprog.com/titles/mrhome/code/PackageDeliveryDetector/PackageDeliveryDetector.pde

void SendDeliveryAlert(int force_value, int force_state)
{
digitalWrite(ONBOARD_LED, force_state ? HIGH : LOW);
if (force_state)
Serial.print("Package delivered, force_value=");
else
Serial.print("Package removed, force_value=");
Serial.println(force_value);
XBeeSerial.println(force_value);
}
void loop()
{
// wait a second each loop iteration
delay(1000);

// poll FLEX_SENSOR voltage
force_value = analogRead(FORCE_SENSOR);

switch (force_state)

{

case 0: // check if package was delivered
if (force_value >= FORCE_THRESHOLD)

{
force_state = 1;
SendDeliveryAlert(force_value, force_state);

}

break;

case 1: // check if package was removed
if (force_value < FORCE_THRESHOLD)

{
force_state = 0;
SendDeliveryAlert(force_value, force_state);

}

break;

Even though the basic sketch is written, we still need to test the sketch on the
Arduino and verify that the force sensitive resistor reacts appropriately to weight
change events. We also need to ensure that the XBee radios are paired with each
other and are passing the force values and weight messages being detected on
the Arduino’s analog pin 0.

6.6 Testing the Delivery Sketch

Install and run the sketch on the Arduino, open the Arduino IDE serial window,
and pinch the force sensitive resistor between your thumb and forefinger. A
delivery detection should register on the serial window. Release the force
sensitive resistor and wait a few seconds. The serial window should report a
value less than 400, followed by an Empty alert. If you don’t see these messages,
check your sensor wiring. You may also need to increase or decrease the
force_sensor_value threshold value condition to address any jitter or unexpected

fluctuations in the analog readings of the sensor.

Next, make sure that the XBee radios are connected and communicating with
each other. Use the screen command that was mentioned in Chapter 5, Tweeting
Bird Feeder, to observe the inbound messages from the force sensitive resistor
when it is squeezed. The information being transmitted should be the same as
what is being displayed in the Arduino IDE serial window. Once everything
checks out, we can write a Python script that will listen for inbound XBee
messages via the FTDI cable created--serial port and act on them accordingly.

6.7 The Delivery Processor

Once again, we’re going to borrow from the code we wrote in Chapter 5,
Tweeting Bird Feeder. We’re going to copy the serial monitoring and SQLite
database connectivity instructions and enhance the script with additional
functionality. First, we’re going to add the ability to scan a database containing
known tracking numbers of packages in transit. When a delivery notification is
received via the XBee/FTDI serial port connection, we will wait several minutes
before iterating over the tracking numbers to determine which package was
delivered. This delay can sometimes take an hour or more with some couriers. In
the case of the US Post Office, it can take up to a day, making lookups on USPS
deliveries impractical for our more immediate needs.

After scanning and polling the tracking numbers with the appropriate courier’s
web services, we will add any courier delivery validation information to our
delivery notification email message. If an error occurs with the tracking number
lookup or if there were no confirmed deliveries of the tracking numbers we
iterated upon, we will say that in the body of the message as well.

Finally, we will use Gmail to send our message to the intended recipient. If you
don’t have a Gmail account, you will need to create one for this project.
Alternatively, if you have SMTP outbound mail access via a different server,
you’re welcome to substitute Gmail’s SMTP gateway with your own. Before we
can write any Python code, though, we will need to create our database
structures to store delivery events, tracking numbers, package descriptions, and
confirmations.

6.8 Creating the Delivery Database

We need to create two tables for this project. The first will store both the history
of force sensitive resistor triggers that occur when packages are delivered and
removed as well as the value of the exceeded threshold value. The second table
will store known tracking numbers of inbound package deliveries and a date
delivery field that will contain the time and date of when the delivery was
confirmed by the courier. We’ve done something like this before in Chapter 5,
Tweeting Bird Feeder, so we’ll apply that same approach to the creation of the
package delivery database.

We will first create the database file using the sqlite3 tool, followed by the
creation of the two tables within the packagedelivery database. Recall that we need

to capture the force sensitive resistor’s trigger actions and record the time and
date of when those actions take place. Here’s the structure of the database:

Column Data Type Primary Autoinc? Allow Unique?
Name Key? Null?

id INTEGER YES YES NO YES
time DATETIME NO NO NO NO
event TEXT NO NO NO NO

Does this look familiar? Yes, it’s very similar to the structure of the table we
created for the Tweeting Bird Feeder project. The general principles are the

same: namely, we need to capture an event and record when it occurred in a
structured format. This time the event is when a package arrives.

Create this table by submitting the following SQL statement to the sqlite
command line:

[~1%$ sqlite3 packagedelivery.sqlite
SQLite version 3.7.6

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite> CREATE TABLE "deliverystatus" ("id" INTEGER PRIMARY KEY NOT NULL UNIQUE,
"time" DATETIME NOT NULL,"event"™ TEXT NOT NULL);

We still need a table called tracking to hold assigned tracking numbers, a
description of the package contents, and the package’s delivery status and the
date of delivery as confirmed by the courier’s own records. The structure of this
table should be as follows:

Column Name Data Type Primary Autoinc? Allow Unique?

Key? Null?
id INTEGER YES YES NO YES
tracking_number TEXT NO NO NO NO
description TEXT NO NO NO NO
delivery_status BOOLEAN NO NO NO NO
delivery_date DATETIME NO NO NO NO

Run the following SQL statement in the sqlite3 command-line tool to create this
second table structure in the packagedelivery database:

[~]1%$ sqlite3 packagedelivery.sqlite

SQLite version 3.7.6

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite> CREATE TABLE "tracking" ("id" INTEGER PRIMARY KEY NOT NULL UNIQUE,
"tracking_number" TEXT NOT NULL, "description" TEXT NOT NULL,
"delivery_status" BOOL NOT NULL, "delivery_date" DATETIME);

Now that our database tables have been created, we can proceed with the next
step of obtaining the Python package dependencies we will use in the delivery
processor script.

6.9 Installing the Package Dependencies

To make it easier to track packages being handled by FedEx or UPS, we are
going to use a Python package called packagetrack. This wrapper helps parse the
XML-formatted tracking data provided by the courier’s web services, making it
much easier to handle the data. While it would have been possible to use a
Python screen-scraping library like Beautiful Soup, such solutions can be brittle.
Not to mention, couriers the size of FedEx and UPS offer comprehensive APIs
to their web services partially to discourage screen scrapers from data harvesting
their sites. As such, before installing the packagetracklibrary, you will need to use
an existing UPS and FedEx customer account to sign up for each company’s
service APIs. If you do not already have a customer account number and login,
you will need to visit each company’s website and create a new account. The
account creation process requires a valid credit card number (used to bill for
parcel shipping charges).

With a valid username, password, and account number in hand, visit each
company'’s respective developer portals to sign up for a production web service
API key (for FedEx) or license number (for UPS). FedEx will also generate
additional security credentials (key password and meter number) when you
request the production key. You will need these values to call the respective
courier’s web service APIs.

Next, we will install the latest packagetrack package. However, instead of
retrieving it via the simple easy_install Python package retrieval and installation
utility, I suggest using git to clone a fork of packagetrack maintained by Michael
Stella.[60] In addition to Michael’s packagetrack, download his fork of its
dependency, python-fedex, which fixes a parsing issue with the FedEx XML
payload.[61] The python-fedex package also relies on one more Python library
dependency, called the suds library. This is a Simple Object Access Protocol
(SOAP) library implementation for Python that python-fedex uses to parse the
SOAP XML-wrapped payload received by the FedEx web service. Use the sudo
easy_install suds Python command to automatically download and install the suds

package.

Next, install both the python-fedex and packagetrack packages via the sudo python
setup.py install command in the terminal window. Ensure that the packages were
successfully installed by launching the Python interpreter and typing python in
the terminal window. At the >>> prompt, type import packagetrack and hit return. If
no error messages appeared, you installed the packages correctly.

All the other packages we will call upon in the delivery detector script are
included with the standard Python 2.5 or higher distribution. With the
packagetrack dependencies and courier’s web service API key requirements
satisfied, we are ready to write the delivery monitoring script.

6.10 Writing the Script

The package delivery monitoring script needs to perform several functions, from
listening for and reacting to triggers from the package delivery monitoring
hardware to sending an email alert about the event and everything in between.
Specifically, the script needs to do the following:

1.

8.

Listen for threshold exceeded events (i.e., package delivery and removal)
sent via the soft serial port communications between the XBee radios.

Timestamp these events generated by the force sensitive resistor in the
deliverystatus table.

If a high value is received (i.e., a package is delivered), query tracking
numbers stored in the tracking table. If a low value is received (i.e., a

package is removed), send an email alert stating such and return execution
of the script back to listening for delivery events.

If a high value is received, wait for a specified time before querying the
tracking table to allow time for the courier to update the delivery records.

Iterate over undelivered tracking numbers and poll the appropriate courier’s
web service records for delivery confirmation status.

If the courier’s web service results report a delivery confirmation, change
the status of the tracking number record in the local tracking database table to

1 (i.e., boolean value for delivered).

Send an email via Gmail’s secure SMTP gateway that contains the results of
delivery activity in the body of the message. Note that you will need login
access to an active Gmail account for this function to work.

Return to listening for additional package delivery events.

With those steps in mind, here’s the complete script.

PackageDeliveryDetector/packagedeliverydetector.py

@® from datetime import datetime

import packagetrack

from packagetrack import Package

import serial

import smtplib

import sqlite3

import time

import os

import sys

Connect to the serial port

XBeePort = serial.Serial('devtty.YOUR_SERIAL_DEVICE', \
@ baudrate = 9600, timeout = 1)

® def send_email(subject, message):
recipient = 'YOUR_EMAIL_RECIPIENT@DOMAIN.COM'
gmail_sender = 'YOUR_GMAIL_ACCOUNT_NAME@gmail.com'
gmail_password = 'YOUR_GMAIL_ACCOUNT_PASSWORD'

Establish secure TLS connection to Gmail SMTP gateway
gmail_smtp = smtplib.SMTP('smtp.gmail.com',587)
gmail_smtp.ehlo()

gmail_smtp.starttls()

gmail_smtp.ehlo

Log into Gmail
gmail_smtp.login(gmail_sender, gmail_password)

Format message

mail_header = 'To:' + recipient + '\n' + 'From: ' + gmail_sender + '\n' \
+ 'Subject: ' + subject + '\n'

message_body = message

mail_message = mail_header + '\n ' + message_body + ' \n\n'

Send formatted message
gmail_smtp.sendmail(gmail_sender, recipient, mail_message)
print("Message sent")

Close connection
gmail_smtp.close()

@ def process_message(msg):
try:
Remember to use the full correct path to the

http://media.pragprog.com/titles/mrhome/code/PackageDeliveryDetector/packagedeliverydetector.py

packagedelivery.sqlite file

connection = sqlite3.connect("packagedelivery.sqlite")
cursor = connection.cursor()

Get current date and time and format it accordingly
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

sqlstatement = "INSERT INTO delivery (id, time, event) \
VALUES(NULL, \"%s\", \"%s\")" % (timestamp, msg)
cursor.execute(sqlstatement)
connection.commit()
cursor.close()
except:
print("Problem accessing delivery table in the " \
+ "packagedelivery database")

if (msg == "Delivery"):

Wait 5 minutes (300 seconds) before polling the various couriers
time.sleep(300)

try:
connection = sqlite3.connect("packagedelivery.sqlite")
cursor = connection.cursor()
cursor.execute('SELECT * FROM tracking WHERE '\
+ 'delivery_status=0")
results = cursor.fetchall()

message =

for x in results:
tracking_number = str(x[1])
description = str(x[2])
print tracking_number

package = Package(tracking_number)

info = package.track()

delivery_status = info.status
delivery_date = str(info.delivery_date)

if (delivery_status.lower() == 'delivered'):
sql_statement = 'UPDATE tracking SET \
delivery_status = "1", delivery_date = \

"' + delivery_date + \
"" WHERE tracking_number = "' \
+ tracking_number + '";'

cursor.execute(sql_statement)
connection.commit()

message = message + description \
+ ' item with tracking number ' \
+ tracking_number \

+ ' was delivered on ' \

+ delivery_date +'\n\n'

Close the cursor
cursor.close()

If delivery confirmation has been made, send an email
if (len(message) > 0):
print message
send_email('Package Delivery Confirmation', message)
else:
send_email('Package Delivery Detected', 'A ' \
+ 'package delivery event was detected, ' \
+ 'but no packages with un-confirmed ' \
+ 'delivery tracking numbers in the database ' \
+ 'were able to be confirmed delivered by ' \
+ 'the courier at this time.')
except:
print("Problem accessing tracking table in the " \
+ "packagedelivery database")

else:
send_email('Package(s) Removed', 'Package removal detected.')
® if sys.platform == "win32":

os.system("cls")
else:
os.system("clear")

print("Package Delivery Detector running...\n")
try:
while 1:
listen for inbound characters from the XBee radio
XBee_message = XBeePort.readline()

Depending on the type of delivery message received,

log and lookup accordingly

if "Delivery" in XBee_message:
Get current date and time and format it accordingly
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")

print("Delivery event detected - " + timestamp)
process_message("Delivery")

if "Empty" in XBee_message:
Get current date and time and format it accordingly
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
print("Parcel removal event detected - " + timestamp)

process_message("Empty")

except KeyboardInterrupt:
print("\nQuitting the Package Delivery Detector.\n")
pass

Begin by importing the script’s dependencies on the custom packagetrack
library along with the serial, smtplib, sqlite3, time, os, and sys standard Python
libraries.

Identify the serial port of the XBee radio attached to the computer’s serial
port. This radio will listen for incoming transmissions from the paired XBee
radio attached to the Arduino connected to the force sensitive resistor.
Replace the 'devtty.YOUR_SERIAL_DEVICE' placeholder with the actual path of the

your XBee radio’s attached serial port value.

This is the send_mail routine that is used in the process_message routine, and
thus it needs to be declared first. Replace the recipient, gmail_sender, and
gmail_password placeholder values with your desired recipient and Gmail
account credentials.

The process_message routine is where most of the action happens in the script.
Connect to the packagedelivery.sqglite SQLite database and log the type of event
received. If a delivery message is received, the script waits for five minutes
before polling the FedEx and UPS web services to give the shipper enough
time to log the delivery status to the central servers. Then, the tracking table in
the packagedelivery.sqlite database is queried for any undelivered tracking
numbers. These numbers are submitted one at a time to the respective web
service. If a delivery confirmation is returned, its positive response is logged
to the database with the confirmed delivery date, as well as appended to the

body of the email message to be sent via the send_email routine.

® This is the main loop of the script. Begin by clearing the screen and listening
for a “Delivery” or “Empty” message from the Arduino-attached XBee radio
and invoke the process_message routine.

® Gracefully exit the script if a Ctrl-C keypress is detected.

Save the script as packagedelivery.py and execute it with the python packagedelivery.py
command. If any errors arise, check syntax and codeline indentations, since
Python is very strict about line formatting. If the script starts up without any
complaints, you’re ready to test it out.

6.11 Testing the Delivery Processor

With the Python script written and either (or both) FedEx and UPS customer
accounts and web developer API keys registered, we can now proceed with
running the sketch and listener script through a functional test. Load a valid,
recent FedEx or UPS tracking number into the trackingstatus table in the
packagedelivery database. To do this, you can use the same SQLite Manager plug-
in for Firefox that was used to create the database tables. Simply select SQLite
Manager from Firefox’s Tools menu, then open the packagedelivery.sqlite file. Click
the trackingstatus table listed in the left column area, followed by the Browse &
Search tab. Lastly, click the Edit button to add/modify the tracking number
record(s).

Conversely, if you prefer the faster (though less visually stimulating) sglite3
command-line interface, add your own tracking number(s) via the following
SQL statement (remembering, of course, to replace the YOURTRACKINGNUM
placeholder with a valid FedEx or UPS tracking number):

sqlite> INSERT INTO tracking("tracking_number",6 "description”,"delivery_status")\
VALUES ("YOURTRACKINGNUM", "My Package Being Tracked","0");

Quickly check that the record was indeed correctly added to the tracking table
with a simple select statement:

sqlite> select * from tracking;
1| YOURTRACKINGNUM|My Package Being Tracked|O|

Add any other valid FedEx or UPS tracking numbers as well to test the iterative
lookup functionality that was coded into the Python script. For the purposes of
this test, tracking numbers don’t have to only be those for packages in transit. In
fact, it’s best to have a mix of both in-transit and delivered packages to verify
that the script correctly updated only those packages with tracking numbers that
have a confirmed delivery status.

The moment of truth has arrived. Power up the Arduino/XBee package delivery

hardware. Make sure the receiving XBee is plugged into your computer via the
FTDI cable and execute the python packagedelivery.py command. Press firmly on
the force sensitive resistor and wait for the script to process the tracking number
queries. If everything worked successfully, you should have received an email
from the Gmail account you used for the SMTP gateway that listed all confirmed
package deliveries. You can also execute another select * from tracking; query from
the sqlite3 command line to verify that the boolean delivered field has been
changed from O (false) to 1 (true), and that the appropriate time stamp
(indicating when the package was actually delivered) was recorded in the
deliver_time field.

If the script failed or if the values were not properly stored, reset the records in
the tracking table and use a variety of debugging approaches with the script (the

easiest being the venerable print() function) to determine where problems are
arising in the script’s execution.

Once the tests have successfully and repeatedly passed, we’re ready to install the
hardware configuration outdoors in a convenient location close to a power outlet.

6.12 Setting It Up

First, identify an appropriate spot to place the pressure plate. Most parcel
delivery companies drop off packages at a resident’s front door, just off to the
left or right side so as not to block the entrance. To help guide to placement of
the packages, you can leave a note or sign for the courier to specifically drop
boxes on the designated rectangular pressure plate we built for the project.

Better yet, use or build a container with a lid and place the sensor-embedded
plate on the bottom of the container. You can purchase inexpensive, sturdy,
water-resistant containers that also act as large seats when the top lid is down.
With a little extra work, you can place the Arduino and XBee radio in a hard-
shelled, waterproof enclosure and carefully mount the assembly to the inside of
the container.

Tuck it far enough to the side so that it does not obstruct any packages that might
forcibly land on the assembly and possibly damage the electronics. Post a note
asking delivery personnel to place packages in the container. Depending on how
frequently you receive parcels, this new behavior may be adopted quickly by
those who manage the routes in your area.

Due to the proximity of the detector to the front entrance of the home, an
outdoor power outlet should be easy to locate and use. If the placement of your
assembled detector happens to be in direct sunlight for most of the day, you can
even try powering the electronics via a solar cell battery like the one
recommended for the Tweeting Bird Feeder project.

With everything set up and powered, test out the detector for yourself. Try boxes
of various shapes, sizes, and weights to see how the configuration reacts to each.
You may need to reposition the force sensitive resistor to achieve a consistent
trigger. Adding a second and even a third force sensitive resistor will also greatly
improve detection, especially for smaller packages that may not hit the center
sensor plate.

Your Package Delivery Detector is now complete and ready to process
deliveries. Place orders with your favorite online retailers to see how much more
convenient and reassuring it is to know that an anticipated package is awaiting
your retrieval when you get home.

6.13 Next Steps

It is easy to extend the detector beyond package delivery notification. Here are a
few ideas that can be used to further develop the concept.

The current design is limited to one package delivery before it needs to be
reset. Enhance the sketch and Python script to account for multiple package
deliveries from multiple couriers. For instance, if a courier delivers a
package that triggers a threshold event, set a new threshold value such that
another delivery can be detected and verified before you retrieve the first
package.

When the force sensitive resistor’s threshold is exceeded, capture a photo of
the delivery in progress and send it as an attachment with the delivery email
confirmation.

Enhance the database portion of the Python script to store the results of the
package delivery query and write a web front end in Django to use as a
package delivery history tool.

Place the force sensitive resistor under your front doormat and be alerted
when a visitor comes calling before the doorbell rings. To remotely unlock
the door for trusted individuals, combine with a webcam and an electric
lock from Chapter 9, Android Door Lock.

If you frequently receive packages, employ message notification
alternatives beyond email and Twitter. Write a package delivery notification
service for Android or an iMessage-enabled delivery app for iOS that will
natively alert you about package arrivals.

Shrink the delivery detector assembly with the same Arduino Nano/XBee
configuration used in Chapter 5, Tweeting Bird Feeder. Swap out the force
sensitive resistor with a PIR to notify you when a hand reaches into your
mailbox.

e Combine the detector with the guard dog from Chapter 4, Electric Guard
Dog. Use the force sensitive resistor to notify the guard dog to power up
and look for movement. Combine with a laser and range finder to
accurately “paint the target” to greet visitors with a high-tech welcome.

Footnotes

[58] http://www.adafruit.com/products/166

Sparkfun offers a square resistor that provides even greater surface
[59] area:http://www.sparkfun.com/products/9376.

[60] https://github.com/alertedsnake/packagetrack

[61] https://github.com/alertedsnake/python-fedex

Copyright © 2012, The Pragmatic Bookshelf.

http://www.adafruit.com/products/166
http://www.sparkfun.com/products/9376
https://github.com/alertedsnake/packagetrack
https://github.com/alertedsnake/python-fedex

WebEnabled Light Switch

Imagine coming home after a long day at work and being able to power on
lights, televisions, and appliances simultaneously from a native control
application running on your mobile phone. Any electrical device with a standard
power plug can be a part of this vision.

We’re going to make that vision a reality with the help of a networked computer,
a Ruby on Rails web application, a native Android phone application, and an
older home automation technology known as X10. We will build a native remote
light switch Android application that can turn lights on and off with the touch of
an onscreen toggle switch (Figure 21, Easily control your home's lighting and
electrical appliances). When we’re finished, we’ll have the ability not only to
control appliances nearby but also anywhere there is an Internet connection,
should we decide to make the Rails server publicly accessible.

LI L L]l

Figure 21. Easily control your home’s lighting and electrical appliances
...from your own custom smartphone application.

7.1 What You Need

X10 is a company that has been selling its proprietary electrical switches for
many years, and the technology has changed little since its introduction over
thirty years ago. Yet regardless of its age, X10 power switches are still a primary
home automation technology, mostly because they are inexpensive and, when
coupled with a computer, can send and schedule power on/off events.

Instead of relying on X10’s rigid and proprietary Windows-based application to
control X10 devices, we are going to use a freely available open source utility
called Heyu. Created and maintained by Daniel Suthers and Charles Sullivan,
Heyu provides a command-line interface to monitor and send a variety of X10
commands to the CM11A. These instructions will then be relayed to the
specified X10 switches.

For this project, it is best to stick with the Linux or Mac operating system, since
they can easily compile the source code without modification. Unfortunately,
there is no native port of Heyu available for Windows, and none is planned
anytime in the near future. If you are using Windows, consider running a Linux
distribution in a virtual machine using a program like VirtualBox.[62]

You will need the following parts (refer to the photo in Figure 22, WebEnabled
Light Switch parts):

Figure 22. WebEnabled Light Switch parts

1. X10 CM11A computer interface[63]—note that unlike the serial port-based
CM11A, the newer X10 CM15A model connects to a computer via USB
and will not work with Heyu software. See the Heyu FAQ for more details.

[64]
2. X10 PLWO1 standard toggle wall switch
3. Serial to USB interface cable

4. An Android OS phone or tablet device (used to run the WebEnabled Light
Switch client application)

5. A computer (not shown), preferably Linux or Mac-based, with Ruby 1.8.7
or higher installed

How Does X10 Work?
The basic premise behind X10 is sending unique pulse codes over existing
electrical wiring to devices capable of acting on those codes. Each device is
manually set to its own unique house code and device code, H8 for example. To

activate an X10 power switch, this unique identifier is transmitted from a control
interface plugged into a power outlet. Using the home’s existing electrical wiring,
the house code leaves the control interface as a series of pulses that traverses
over the wiring. The X10 device that is set to the target code recognizes that it is
the recipient of the code that follows.

The function code can consist of a simple on or off message that in turn triggers
the relay in the receiving X10 module. This in turn switches on or off the power
going to the lamp or appliance plugged into the module. Besides the basic on
and off codes, other instructions can be sent as well, such as setting a light
dimmer to 25 percent or even turning all X10 devices on or off simultaneously.
For a more comprehensive explanation and a list of these codes, visit the Heyu
website.[65]

Additionally, you will need the following software:

e Heyu 2.9.3 or higher[66]

Ruby on Rails 3.0 or higher[67]

The Eclipse IDE[68]

The Android SDK 1.5 or higher[69]

The Android Development Tools (ADK) Plugin for Eclipse[70]

At the heart of any computer-assisted X10 setup is the control module. The
module provides the interface between the transmission of instructions to X10
devices as well as for the notifications of triggers (ex: motion detection) from
X10 appliances equipped with such capabilities. Several of these interfaces exist,
such as the X10 Firecracker (known by its serial number as the CM17A) or the
original X10 computer interface, the CM11A. Most of the open source X10
automation software available today supports both of these and other interfaces,
but I find the CM11A to be the most prevalent. Hence, I recommend using the
CM11A for this project.

With the required hardware and software in hand, let’s take a look at how we are
going to combine all this technology to make it turn a light on and off from an

Android smartphone application.

7.2 Building the Solution

In order for X10-managed lights and appliances to be remotely controlled, we
are going to assemble a variety of separate technologies and use them in a
unified way. We will do the following:

1. Test the X10 computer interface and modules with the Heyu application.

2. Create a Ruby on Rails application that provides a web-based front end to a
subset of Heyu commands.

3. Create an Android mobile application that will communicate with the Rails
application, turning the light on and off via a native onscreen Android
toggle switch control.

Figure 23. The X10 CM11A interface controls the WebEnabled Light
Switch.

We will start by hooking up the X10 hardware and verifying that it can be
controlled via the Heyu application.

7.3 Hooking It Up

Plug the X10 CM11A into an outlet near your computer so that its interface cable
is within reach of your computer. Because the CM11A uses a 9-pin serial
connection, you will need a USB-to-serial adapter and the appropriate driver,
similar to the illustration shown in Figure 23, The X10 CM11A interface controls
the WebEnabled Light Switch. If you use a Mac running OS version 10.6 or
higher, you can download the PL-2303 driver from the Prolific website.[71]
Computers running the latest Linux distributions should have no trouble
identifying and connecting to the PL-2303 interface.

Next, plug the USB-to-serial adapter into a USB port on your computer and
attach it to a powered CM11A interface. You’ll need to interrogate the device for
the serial port that the operating system assigned to the interface. You can do this
via locating the appropriate tty device file in the /dev directory by issuing a Is
devtty* command in the terminal window. Easier still, load up the Arduino IDE
and select the Tools — Serial Port menu option. In my case, the device name of
the CM11A is devtty.usbserial, as shown in Figure 24, The Arduino Tools menu

displaying the USB serial adapter name. Note the name of the new device path
since you will need to refer to it in the Heyu configuration file.

m Help

Auto Format T |5 | Arduino 0021
Archive Sketch

Fix Encoding & Reload
Serial Monitor {3#EM

Board [

Serial Port >

Burn Bootloader

/dev/tty.usbserial-A6003SHc

/dev/cu.usbserial-A6003SHc
v /dev/tty.usbserial-A700dZlz

/dev/cu.usbserial-A700dZIz
fdev/cu.usbserial
/dev/tty.Bluetooth-PDA-Sync
fdev/cu.Bluetooth-PDA-Sync
/dev/tty.Bluetooth-Modem

/dev/cu.Bluetooth-Modem
T —

Figure 24. The Arduino Tools menu displaying the USB serial adapter
name

Now that the CM11A is connected to and recognized by your computer,
download the Heyu source code from the Heyu.org website, uncompress the
tarball via the tar -zxvf heyu-2.9.3.tar.gz command. Then, perform a

./Configure;make;make install cycle to install the compiled application. If you use a

Mac, you need to have the Mac developer tools installed before proceeding.[72]
If you are using a Linux computer, make sure you have the necessary gcc
compile and make tools installed. For example, if you are using a Debian-based
Linux distribution like Ubuntu, issue sudo apt-get install build-essential from the

terminal window to download and install the compiler and linker tools. Then,
execute the usual ./Configure, make, and sudo make install to compile the source and

install the heyu executable and dependencies on your computer.

Along with the heyu executable, a x10.conf configuration file is installed in the
etcheyu directory. Open this file for read-write editing (ex: sudo vi etcheyu/x10.conf).

There are a number of options that can be set in the x10.conf file, but the one

we’re most concerned with now is the serial port path to the CM11A that you
identified earlier.

Serial port to which the CM11a is connected. Default is devttySoO.
TTY devtty.usbserial

Use your favorite text editor to enter the serial port value that matches the
location of your CM11A device. Save the file and test the settings by first
launching the Heyu state engine via a terminal window with the command:

> heyu engine

If no errors are reported, you’re in good shape since the engine daemon found
the device and is running successfully in the background. You can also try
entering heyu info for more details about the Heyu configuration. Now, in the

same terminal enter this:
> heyu monitor

This will monitor the interaction of the CM11A with other X10 devices.
Assuming you have set the housecode of the PLWO01 wall switch to H3, enter this
command:

> heyu on h3

That should turn on the switch and complete the circuit for whatever electrical
device (such as a ceiling lamp) it is routing electricity to. You should also see the
terminal window running the Heyu monitor process report the transmittal of the
command:

07/25 12:45:34 sndc addr unit 3 : hu H3 (_no_alias_)
07/25 12:45:34 sndc func On : hc H

Turn off the switch by issuing an off command to the H3 device:
> heyu off h3

07/25 12:50:17 sndc addr unit 3 : hu H3 (_no_alias_)
07/25 12:50:18 sndc func Off : hc H

If these commands fail to turn the switch on and off, try another X10 module,
like an AM486 Appliance module. If that also fails, try bringing the wall switch
closer to the X10 computer interface, preferably on the same room wiring. The
majority of issues I have encountered with X10 projects are often directly
associated with the reliability of the fire-and-forget protocol of X10 itself. If you
suspect the problem may be the X10 hardware, try swapping the X10 device in
question with replacement hardware. You can also have an electrician check for
line noise or electrical wiring issues that may be hindering the transmission of
X10 pulses from the CM11A interface to the accompanying X10 modules.

X10 Problems
While X10 is the most prevalent (and most advertised) low-cost home
automation solution available today, it does have a number of constraints.
Besides the problems with its fire-and-forget protocol (i.e., X10 sends out
messages but has no way to verify whether or not the device acknowledged and
acted upon the request), the other big problem with X10 is its use of home
electrical wiring to propagate its signals.

Home wiring often is both noisy and degrades over time. Such wiring
connectivity can be exacerbated by X10 modules plugged into surge-protecting
power strips and other line-conditioning end points that can filter out the
intentional fluctuations that X10 commands dump into the electrical stream.
Depending on how far the X10 signal needs to travel, additional X10 modules
may be required to ensure that X10 commands reach their intended destination.
Yet even with these annoyances, X10 remains one of the most cost-effective and
easiest home automation solutions to implement. Even though a number of
competing alternatives to X10 have been introduced over the thirty-plus years
that X10 has been commercially available, none have yet matched X10’s low
cost and ease of implementation.

Once the computer and CM11A are talking to one another via the heyu
command-line interface, we can leverage this functionality by encapsulating it
into a web application. This way, we can easily access and control X10 end
points from a web browser and ultimately from an Android application.

7.4 Writing the Code for the Web Client

For the Webenabled light switch, we will create a simple Ruby on Rails project
to manage the user interface interaction first via a web browser. We won’t spend
a lot of time on the user interface, though, since that will ultimately be the job of
the custom Android application we will create after the web interface is
functionally tested.

Rails runs optimally on Mac or Linux computers, and it is already installed by
default on Mac OS X 10.6. However, it is not the latest version. Because this
project requires Rails 3.0 or higher, the instructions are not applicable to older
versions of the framework. Follow the instructions on the Ruby on Rails website
to get the latest Rails release running on your computer.

With the Rails web framework installed, create a new directory and switch to
that directory before creating the new Rails project:

> mkdir ~/projects/ruby/rails/homeprojects/
> cd ~/projects/ruby/rails/homeprojects
> rails new x10switch

create

create README

create Rakefile

create config.ru

create .gitignore

create Gemfile

create app

create app/controllers/application_controller.rb
create app/helpers/application_helper.rb
create app/mailers

create app/models

create vendor/plugins
create vendor/plugins/.gitkeep

Next, change into the new x10switch directory and create a new controller called
command with an action called cmd to manage the interaction between the web

interface and the Heyu terminal application.

> cd x10switch
> rails generate controller Command cmd

create app/controllers/command_controller.rb
route get "command/cmd"
invoke erb
create app/views/command
create app/viewscommandcmd.html.erb
invoke test_unit
create test/functional/command_controller_test.rb
invoke helper

create app/helpers/command_helper.rb
invoke test_unit
create test/unit/helpers/command_helper_test.rb

Then, locate the app/controllers/command_controller.rb file and check for the on and
off parameters and execute the appropriate action:

class CommandController < ApplicationController
def cmd
@result = params[:cmd]

if @result == "on"
%x[/usr/local/bin/heyu on h3]
end

if @result == "off"
%x[/usr/local/bin/heyu off h3]
end
end
end

The %x is a Ruby construct to execute an application with command-line
arguments. Hence, %x[/usr/local/bin/heyu on h3] tells Heyu to send an on command

code to the H3 house code X10 switch. Likewise, the %x[/usr/local/bin/heyu off h3]
tells that same switch to turn off.

Next, edit the app/viewscommandcmd.html.erb document and replace its placeholder
contents with the following single line of embedded Ruby code to display the

results of the on and Off request:

The light should now be <%= @result %>.

While we could go much further with this Rails application, dressing it up with a
nice user-friendly interface accessed from the public/index.html file as well as

providing more verbose output of the result of the action, I will leave that
exercise for the aspiring reader. Since we will ultimately be controlling the
switch from a native mobile client application, there’s little incentive to invest
time in whipping up a sparkly web UI when it will hardly ever be seen.

Finally, edit the config/routes.rb file and replace the get "command/cmd" with the
following:

match "command:cmd", :to => 'command#cmd'

This instructs the Rails application on how to route incoming command requests
to execute the on/off actions. Save your work and get ready to rumble!

If you’re setting up a newer version of Rails (such as Rails 3.1) on a Linux
system, you may also need to install a few package dependencies (or gems as
they’re known in Ruby parlance) in order for Rails to run. Just edit the Gemfile
file that was generated in the x10switch directory and add the following:

gem 'execjs'
gem 'therubyracer'

Save the changes and then run this command:

> bundle install

This will download and install the extra files used by the Rails 3.1 JavaScript
processing engine. With these two gems successfully installed, you’re ready to
run and test out the X10switch Rails application.

7.5 Testing Out the Web Client

With the X10 computer interface working and plugged into the serial port of the
computer, fire up a development server of the Rails 3 code via this:

> cd ~/projects/ruby/rails/homprojects/x10switch
> rails s

=> Booting WEBrick

=> Rails 3.0.5 application starting in development on http://0.0.0.0:3000
=> Call with -d to detach

=> Ctrl-C to shutdown server

[2011-03-18 16:49:31] INFO WEBrick 1.3.1

[2011-03-18 16:49:31] INFO ruby 1.8.7 (2009-06-12) [universal-darwin10.0]
[2011-03-18 16:49:31] INFO WEBrick::HTTPServer#start: pid=10313 port=3000

Open a web browser on the local machine and enter the following:

http://localhost:3000/command/on

If everything is coded correctly, you should see The light should now be on. in the
browser window, as shown in Figure 25, The browser should indicate the proper

status of the light.

8eno X10switch
4 | » || + | http://localhost:3000/command/on ¢ MQr Google

The light should now be on.

Figure 25. The browser should indicate the proper status of the light.

More importantly, Heyu should have executed the on command for the X10
device coded with the H3 house code. In other words, the light should have
turned on. Turn the light off by submitting the off command:

http://localhost:3000/command/off

http://localhost:3000/command/on
http://localhost:3000/command/off

If the light turned off, congratulations! You have wired up and programmed
everything correctly. When you’re ready to expand the Rails application to
handle even more commands, just add more if @result == statements to the
CommandController class containing the command you want Heyu to transmit.
These commands could range from dimming lights to 30 percent, turning an
appliance on for a specified duration, or managing a combination of power
on/off events.

If you’re interested in learning more about programming web applications using
the Ruby on Rails framework, check out Programming Ruby: The Pragmatic
Programmer’s Guide [TFH09].

Now that the web application server is working, it’s time to build a mobile client.

7.6 Writing the Code for the Android Client

You might be wondering why you should go through the trouble of building a
native Android client when the web application we wrote can be accessed by the
Android mobile web browser. Well, if all you wanted to do was toggle light
switches on and off, then I would say you don’t need a native client. The web
interface works just fine and can be further enhanced using AJAX and slick
HTML5/CSS3 user interface effects. But if you want to give a little more
intelligence to the app, such as activating power switches based on your
proximity to them or running an Android service that monitors inbound X10
events like motion detection and then sounds an alert on your phone to bring
such events to your attention, a dynamic web page just won’t do.

If you haven’t already done so, download, install, and configure the Eclipse IDE,
the latest Android SDK, and the ADK plug-in for Eclipse. Visit the Android
SDK website for details on how to do so.[73]

You will also need to create an Android Virtual Device (AVD) so that you can
use it to test the client application in an Android emulator before sending the
program to your Android device.[74] I suggest creating an AVD that targets
Android 1.5 (API Level 3) so that it emulates the largest number of Android
phones available.

Launch the Eclipse environment and select File — New — Android Project.
Depending on the version of Eclipse you are running, this option might also be
found on the File menu via New->Other->Android->Android Project. Call the
project LightSwitch and select Build Target as Android 1.5. You can choose a
higher Android version depending on what level of Android device you want to
deploy the application to, but since the LightSwitch program will be sweet and
simple, Android 1.5 should be adequate for this sample application.

In the Properties area, fill in the Application name as Light Switch and the Package
name as com.mysampleapp.lightswitch, and check the Create Activity checkbox and
enter LightSwitch. You can specify the Min SDK Version if you wish, but since

we’re developing for one of the more popular lowest-common-denominator
versions of Android, we’ll leave it blank for now. Before you continue, check to
see if your New Android Project dialog box looks like the one shown in Figure
26, Creating a new Android Project dialog box with completed parameters.

A0 Mew Android Project |
| New android Project :

Creates a new Android Project resource.

Project name: | Lightswitch
Contents
{®) Create new project in workspace
() Create project from existing source
Use default location |

Users fmilke_riley/Projects /java/Lightswitch

Logation: Browse...
|
U Create project from existing sample
Samples: | ApiDemos b
Build Target
Target Name Vendor Platform AP L
1 Andreid 1.5 Android Open Source Project 15 3
: Android 1.6 Android Open Source Project L& 4 |
O] Android 2.1-updatel Android Open Source Project Z.1-updatel 7
: Androld 2.2 Android Open Source Project 2.2 &
] Google APl Google Int. 2.2]
C g Jdie

Standard Android platform 1.5

Properties

Application name: Light Switch

Package name: oo, ysampleapp.lightswitch
4 Create Activity: [LightswiteH J |
Min SDK Version: | |

I:?_:‘: f_ < Back

Mext = 3 { Cancel :I E—Mﬂl—’

L
P

4.

Figure 26. Creating a new Android Project dialog box with completed
parameters

Android developers with good testing practices would then click the Next button
in the New Android Project dialog box to set up a Test Project resource.
However, in the interest of space and time, we’ll go ahead and click the Finish
button.

Once the Android Development Tools Eclipse plug-in generates the skeleton
Light Switch application code, double-click the main.xml in the res/layout folder to
open it into Android’s simple form editor. Drag a ToggleButton control from the
Form Widgets palette onto the main.xml graphical layout. Don’t worry about
perfectly aligning the control in the right spot for now. For this exercise, we’re
more interested in function over form.

Editing config: default _Any locale = | | NoDock + | | Day time * | |Create...
_2.7in QVGA » | | Portrait & Theme + | | Android 1.5
| Palette LR RS

Form Widgets
Ab TextView
== Button E
CheckBox
" ToggleButton
RadioButton
* | Spinner
“ EditText
s AutoCompleteTex

“4 MultiAutoComple

) ProgressBar
Layouts

Composite
Images & Media
Time & Date

Transitions

Advanced

_- Graphical Layout | | main.xml

Figure 27. The graphical form layout of the Light Switch application

Because this application won’t require anything beyond the basic features found
in the earlier Android operating system releases, change the Android version in
the upper right corner drop-down box of the form editor to Android 1.5. Also,
feel free to delete the default Hello world TextView element from the layout. When
done, the layout should look similar to the screen shown in Figure 27, The
graphical form layout of the Light Switch application. Save the main.xml file.

Expand the src -~ com.mysampleapp.lightswitch tree and double-click the

LightSwitch.java file. Because we will be using the ToggleSwitch widget, the
first thing we need to import is the android.widget.ToggleButton class.

Next, add the java.net.URL and java.io.InputStream libraries, since we’ll be creating
URL objects to pass to Java InputStream object. The import statement section of
the LightSwitch.java file should now look like this:

package com.mysampleapp.lightswitch;
import android.app.Activity;

import android.os.Bundle;

import android.widget.ToggleButton;
import android.view.View;

import java.net.URL;

import java.io.InputStream;

Now we have to make the LightSwitch aware of the ToggleSwitch by finding it
by ID in the LightSwitch class’s OnCreate event and adding an event listener to
monitor when the switch is toggled on and off:

public class LightSwitch extends Activity {
/** Called when the activity is first created. */
@0Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
final String my_server_ip_address_and_port_number =
"192.168.1.100:3344";
final ToggleButton toggleButton =
(ToggleButton) findViewById(R.id.toggleButton1);
toggleButton.setOnClickListener (new View.OnClickListener()
{
public void onClick(View v) {
if (toggleButton.isChecked()) {
try {
final InputStream is = new URL("http://"+
my_server_ip_address_and_port_number +"commandon").openStream();
}
catch (Exception e) {
}
} else {
try {
final InputStream is = new URL("http://"+

my_server_ip_address_and_port_number +"commandoff").openStream();

}
catch (Exception e) {

}

)

Be sure to set the my_server_ip_address_and_port_number string in the example above
to the IP address and port that you plan to use to run the Rails application server
we wrote in Section 7.4, Writing the Code for the Web Client. And that’s it! Go
ahead and run the application in the Android emulator to make sure it compiles
and shows up on the screen correctly.

7.7 Testing Out the Android Client

Time to test out the application on a real X10 light switch. Assuming the Rails-
based X10 web application is working as expected, start up your Rails
development server on the same network/subnet as the emulator in Figure 28,
Running the Light Switch application.

Ealfll & 12:00 Pm

Figure 28. Running the Light Switch application

Use the same port number as the one we assigned in the
my_server_ip_address_and_port_number string from our Android application. For
example, in the case of 192.168.1.100:3344, the IP address is 192.168.1.100 and the
port number is 3344. Pass this as a command-line parameter when launching the
Rails server instance, like this:

> rails s -p3344

With the rails development server now running on port 3344 and waiting for
inbound requests on the same local area network as your Android emulator or
device, click the On/Off toggle button.

Um, nothing happened. Why?

There is one more important setting we have to make in the Light Switch
application configuration. We have to respect the Android application security
model and tell the Android OS that we want to allow our application to Use the

Internet so that we can have our outbound HTTP requests reach the outside
world. To do so, double-click the AndroidManifest.xml file and add the following
line just above the closing manifest tag, like this:

<uses-permission android:name="android.permission.INTERNET"
>

</uses-permission>

The entire AndroidManifest.xml file should now look like this:

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.mysampleapp.lightswitch"
android:versionCode="1"
android:versionName="1.0"

<application android:icon="@drawable/icon"
android:label="@string/app_name"

<activity android:name=".LightSwitch"
android:label="@string/app_name"

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
<uses-permission android:name="android.permission.INTERNET"

</uses-permission>
</manifest>

Recompile and run the Light Switch application with the new permission setting

and click the toggle button. If everything worked as planned, you should see the
Rails server report something similar to the following successfully received
request:

Started GET "commandon" for 192.168.1.101 at Sat Mar 21 19:48:10 -0500 2011
Processing by CommandController#cmd as HTML
Parameters: {"cmd"=>"on"}

Rendered command/cmd.html.erb within layouts/application (11.7ms)

Completed 200 OK in 53ms (Views: 34.7ms | ActiveRecord: 0.0ms)

You should also see the light turn on! Click the toggle button again. It should
generate a similar report for the off command:

Started GET "commandoff" for 192.168.1.101 at Sat Mar 26 19:52:30 -0500 2011
Processing by CommandController#cmd as HTML
Parameters: {"cmd"=>"off"}

Rendered command/cmd.html.erb within layouts/application (13.2ms)

Completed 200 OK in 1623ms (Views: 40.0ms | ActiveRecord: 0.0ms)

Consequently, the light should now switch off.

On rare occasions, one other issue you may encounter when you attempt to
install the Light Switch application on your Android phone is an expired debug
key. Android’s security model requires a signed key to execute code on an
Android device. The signed key should have been automatically generated and
configured when you installed the Android SDK, but in the event that an
expiration message occurs, follow the signing procedure in the Android SDK
documentation to generate a new key.[75]

For more details on installing Android programs onto an Android device from
the Eclipse environment, review the Android SDK documentation on running
Android applications on an emulator and on a device.[76]

7.8 Next Steps

Congratulations! Now that you can control a lamp or appliance via a graphical
toggle switch on your Android phone, a whole new world of home automation
possibilities awaits.

You could continue to enhance the native mobile client by controlling multiple
X10 switches in a facile and elegant manner based on the time of day and the
GPS coordinates of your mobile device (ex: turn on the porch light after dark
when you’re within a five-meter radius of the front door). While we won’t be
building this location-based application in this book, you have the basic building
blocks already in your possession. If you’re interested in going further, read Ed
Burnette’s Hello, Android [Bur10] for some really helpful tutorials, then post
your ideas and creations on the Programming Your Home website!

Several other improvements can be made to the configuration to make the
system more robust and user friendly. These include the following:

e Improve application error trapping and reporting. X10 methods are “fire
and forget” events that do not inherently return success or failure. As such,
there are plenty of enhancements that can be made to the web service to
troubleshoot nearly everything else up to the point of X10 command
transmissions. Before sending a message, trap for and report on X10
computer interface connection errors. Knowing that the X10 interface is
down is far more helpful than seeing no action from the switch without any
explanation of why.

e Invest in several more X10 modules, ranging from two-way (LM14A) and
the Socket Rocket lamp (LM15A) to wall socket (SR227) and heavy-duty
appliance (HD243) modules. Send Heyu transmission events
simultaneously to multiple X10 devices. For example, using a single
method call, turn on lights in the kitchen; power up the toaster, coffee
maker, and ceiling fan; and report back to the mobile client when coffee
will be brewed and a toasted bagel will be ready.

e If you prefer a more lightweight Ruby-based web framework, consider
replacing the Ruby on Rails server application with one using Sinatra.[77]
While it hasn’t yet matched the popularity of Rails, Sinatra is nevertheless a
pretty nifty minimalist Ruby-based framework that is worthy of a closer
look.

e Dress up the mobile user interfaces with a more elegant, multifunctional
front end that can be used for multiple webenabled switches, appliances,
garage door openers, and more.

e Extend functionality to other projects, such as an Arduino-based TV
remote, or link together interface controls to other projects in this book,
such as Chapter 8, Curtain Automation, and Chapter 9, Android Door Lock.

Footnotes

[62] https://www.virtualbox.org/

[63] http://www.x10.com

[64] http://www.heyu.org/heyu_faqg.html

[65] http://www.heyu.org/docs/protocol.txt
[@]htt ://heyu.or
[ﬂ]htt ://www.rubyonrails.com

[68] http://eclipse.org

[69] http://developer.android.com/sdk

[70] http://developer.android.com/sdk/eclipse-adt.html

http://www.prolific.com.tw/eng/downloads.asp?ID=311.
[71]

https://www.virtualbox.org/
http://www.x10.com
http://www.heyu.org/heyu_faq.html
http://www.heyu.org/docs/protocol.txt
http://heyu.org
http://www.rubyonrails.com
http://eclipse.org
http://developer.android.com/sdk
http://developer.android.com/sdk/eclipse-adt.html
http://www.prolific.com.tw/eng/downloads.asp?ID=31l

[72] http://developer.apple.com/technologies/tools/

[73] http://developer.android.com/sdk

http://developer.android.com/guide/developing/devices/managing-
[74] avds.html

[75] http://developer.android.com/guide/publishing/app-signing.html

http://developer.android.com/guide/developing/building/building-
[76] eclipse.html

[77] http://www.sinatrarb.com/

Copyright © 2012, The Pragmatic Bookshelf.

http://developer.android.com/sdk
http://developer.android.com/guide/developing/devices/managing-avds.html
http://developer.android.com/guide/publishing/app-signing.html
http://developer.android.com/guide/developing/building/building-eclipse.html
http://www.sinatrarb.com/

Curtain Automation

One of the more frequent effects in science fiction movies about home life is the
autonomous opening and closing of curtains and window shades. Well, the future
is here and it’s about to get more evenly distributed. In this project, we will
construct a system that will open and close curtains based on light and
temperature. When the heat goes up, the curtains close. Likewise, when the sun
comes up, the curtains open (Figure 29, Automate curtains and shades).

To bring motion to this solution, our primary hardware component will be a
stepper motor, a continuous rotational engine that will be driven by an Arduino
to spin a certain number of revolutions clockwise and counterclockwise. When
the shaft of the stepper motor is connected to a curtain string and pulley system,
the motor will open and close the curtains accordingly.

Let’s take a look at the other supplies we will need to build this project.

&, "B
=l 4 _

Figure 29. Automate curtains and shades ...depending on light and
temperature.

8.1 What You Need

The parts required for this project are fairly straightforward. Sensors for light
and temperature, a stepper motor, and an Arduino board are the primary
components. Then it’s just a matter of mounting and powering the assembly.
Refer to the photo in Figure 30, Curtain Automation parts. Specifically, we will
need the following:

1. Four 2-inch angle brackets to mount the stepper motor in place
2. A 12V bipolar stepper motor[78]

3. Arduino motor shield[79]

4. A 12V power supply[80]

5. Double-sided foam tape to dampen the vibration of the mounted stepper
motor

6. A grooved rubber pulley wheel to grip and move the curtain drawstring
7. Wire to connect the sensors and stepper motor to the motor shield

8. A TMP36 analog temperature sensor (for a close-up image of a photocell
and a temperature sensor, see Figure 31, Curtain Automation sensors)[81]

9. A 10k ohm resistor (usually coded with brown, black, orange, and gold
bands)

10. A photoresistor (the same type we used in Chapter 5, Tweeting Bird Feeder)

11. An Arduino Uno

12. A small breadboard to mount the photocell and temperature sensors

13. A standard A-B USB cable (not pictured) to connect the Arduino to the

computer.

Figure 30. Curtain Automation parts

This project assumes you already have curtains hung on a pulley-based system.
If you don’t already have curtains in place, there are a number of how-to sites on
the Web to assist with hanging curtain rods and setting up the pulley system. The
project works best with the continuous drawstring, traverse rod-based hanging
curtains. That is, as you pull down on the left side of the string, the right side
goes up, and vice versa.

Figure 31. Curtain Automation sensors

You will also need find the size of pulley wheel that best suits your curtain
configuration. For simple curtain rod/drawstring-based systems, a 1-inch-
diameter grooved rubber pulley wheel should do just fine. You can obtain a
variety of pulley wheel sizes from home hardware, auto parts, and even some
craft stores.

Ideally, the center hole of the pulley wheel should snuggly slip onto the stepper
motor’s drive shaft so that it doesn’t fall off or slip when the shaft is rotating. If
you have a home improvement store nearby, bring your stepper motor and try the
various pulley wheels at the store to save time and hassle. Once you’ve found
the perfect size and fit, you’re ready to start assembling the project.

8.2 Building the Solution

We have several objectives to complete for our project to work as intended. First,
we will test the stepper motor by writing a sketch using Adafruit’s AFMotor
library. This assumes that you have already constructed the motor shield. Follow

the instructions on Adafruit’s website for more details on assembling and using
the motor shield.[82]

After we have a working stepper motor’s drive shaft that rotates back and forth
based on the instructions we have the Arduino execute, we will hook up the
photo resistor. We will borrow from the same light sensor routine we wrote for
the Chapter 5, Tweeting Bird Feeder. When this photosensor detects light that
exceeds the threshold we establish, the stepper motor drive shaft will spin
clockwise for a predetermined number of revolutions. When light diminishes
below the low threshold value that we set, the shaft will spin the same number of
revolutions in the opposite direction. When the shaft spins, the attached pulley
will open or close the curtain accordingly.

In addition to light detection, we also need to account for room temperature in
case it exceeds a certain value. If the room starts to get too warm, we can spin
the drive shaft counterclockwise to close the curtain even when there is daylight.
If the temperature cools off to a comfortable level and it’s still daylight, the shaft
will spin clockwise to reopen the curtains.

Once our detectors are working and tested, we will attach the pulley wheel to the
stepper motor’s drive shaft. Then we will wrap the curtain drawstring around it
and determine where we can mount the stepper motor/pulley assembly on the
wall. The location of the assembly needs to keep the curtain drawstring taut
enough so that it will not slip when the pulley is revolving. Next we will
calibrate the number of revolutions required by the stepper motor to open and
close the curtain. After those settings are determined, we can increase the speed
(revolutions per minute) of the stepper motor to establish how quickly or slowly
the curtain should open or close.

With these steps in mind, let’s first take a look at how we can write a sketch that
will control the stepper motor.

8.3 Using the Stepper Motor

Electrical motors work on the principle of electromagnetism to drive the central
shafts. As the magnetic field changes around the coils that wrap around the shaft,
the change in current propels the shaft forward or backward. Stepper motors
refine this principle by allowing granular control of the motor to “step” in well-
defined increments. This makes these motors excellent choices for any
mechanical task requiring precise control.

Stepper motors are used in ink jet printers, plotters, and disk drives; they are also
found in a number of types of industrial manufacturing equipment.

The motor we will use for this project is a popular 12-volt, 350-milliamp, 200-
steps per revolution bipolar stepper motor. This motor should provide enough
torque to move all but the heaviest of curtains. Because the motor pulls 12 volts
of power, it will need to operate from a 12-volt power supply instead of the 5
volts that the standalone Arduino board can deliver. Fortunately, the Arduino
board has the electronics necessary to accept a 12-volt power supply that can
power the Arduino, the motor shield, and the stepper motor.

Assuming that you have already built a working Adafruit motor shield, here are
the steps needed to set up the stepper motor for programming:

1. Connect the four wires from the 12-volt bipolar stepper motor. If your
stepper motor is the recommended one from Adafruit, the wiring sequence
by color should be red, yellow, green, brown. Refer to the photo in Figure
32, Bipolar stepper motor wiring.

2. Attach the motor shield to the top of the Arduino Uno.
3. Plug the 12-volt power supply into the Arduino power port.

4. Connect a USB cable from the computer to the Arduino.

Figure 32. Bipolar stepper motor wiring

Now that the hardware is connected, we can focus on writing an Arduino sketch
that will drive the stepper motor.

8.4 Programming the Stepper Motor

In order to get the stepper motor to work the way we want it to, we need to
import a library that makes it easy to incrementally rotate the motor’s shaft in
either direction at the speed we want it to move. Fortunately, controlling a
stepper motor is easy thanks to Adafruit’s AFMotor motor shield library.[83] As
you do with most Arduino libraries, extract the downloaded zip file, rename the
extracted folder (AFMotor), and place it in the Arduino libraries folder. For more
details, refer to Appendix 1, Installing Arduino Libraries.

With the AFMotor library installed, launch the Arduino IDE. Let’s write a sketch
that will test the stepper motor. The code will do the following:

1. Load the ArMotor library.

2. Create an AFMotor stepper motor object and set the stepper’s connection
and steps per revolution (i.e., how fast the stepper motor’s shaft rotates).

3. Move the shaft clockwise and counterclockwise using the stepper motor’s
two coils. By the way, this action is known as double-coil activation, and it
produces greater torque compared to using just a single coil at a time. We
will need that extra torque to move the curtain string.

Here’s what the completed sketch should look like:

#include <AFMotor.h>
AF_Stepper motor(48, 2);

void setup() {
Serial.begin(9600);
Serial.println("Starting stepper motor test...");
// Use setSpeed to alter speed of rotation
motor.setSpeed(20);

http://media.pragprog.com/titles/mrhome/code/CurtainAutomation/StepperTest.pde

void loop() {
// step() function
motor.step(100, FORWARD, DOUBLE);
motor.step(100, BACKWARD, DOUBLE);

Note that this test code is essentially a subset of the sample code available from
Ladyada’s motor shield web page.[84]

Save and upload the sketch to the Arduino. If all goes well, your stepper motor
should spin clockwise and counterclockwise until you remove power or upload a
new sketch. If the shaft isn’t moving, make sure your stepper motor wiring is
properly connected. Also make sure that you are using a 12-volt power supply
connected to the Arduino, since the motor needs that amount of voltage to move.
If you’re having a hard time seeing which direction the shaft is rotating, affix a
small piece of folded tape on the shaft. It should be easier to see the tape flag
move back and forth as the shaft moves.

Now that your hardware is working, it’s time to add the temperature and light
sensors to give the stepper motor a bit more relevance to its intended motion.

8.5 Adding the Sensors

It’s time to combine the working stepper motor with the photosensor we used in
the Chapter 5, Tweeting Bird Feeder project. Photosensor readings will be taken
every second, and depending on the outdoor light levels, they will trigger the
stepper motor to open or close the curtains. We will also add a temperature
sensor so that we don’t open the curtains if it’s already too warm in the room or
so that we close the curtains if the room temperature exceeds a predetermined
level.

Fortunately for this type of project, which relies on the analog pins to measure
light and temperature, the motor shield does not use any of the Arduino’s analog
pins. Therefore, we will attach one lead of the photocell to the 5V power pin and
the other lead to analog pin 0. And just like the Tweeting Bird Feeder project, we
need to bridge the 10k ohm resistor from the analog pin 0 to ground. Using a
breadboard for this is much easier than wrapping the leads in series. Plus, the
breadboard will make a good stand to keep the photocell propped up and angled
toward the outdoor light.

The temperature sensor has three leads: the first will connect to the 5V power
pin, the temperature sensor’s middle lead will connect to analog pin 5, and the
third (far right) lead will connect to the ground pin. The motor shield makes this
easier. Refer to Figure 33, Curtain Automation stepper motor and sensor wiring
diagram, for setting this up. Note that although the diagram shows an Arduino,
the wiring will actually be connecting to the motor shield mounted on top of the
Arduino (hence the wiring on the side for the stepper motor connection as well
as the wiring to analog pin 5 and the ground and 5V pins on the right side of the
shield).

vvvvvvvvvvvvvvvvvvvvvvvvvvv
nnnnnnnnnnnnnnnnnnnnnnnnnnn

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvv
||||||||||||||||||||||||||||||

|||||||||||||||||||||||||

Figure 33. Curtain Automation stepper motor and sensor wiring diagram

We will poll the variable values of these two sensors every second and react
accordingly should the threshold values we established for these measurements
be exceeded. Let’s write the sketch that will do just that.

8.6 Writing the Sketch

The sketch for this project borrows from ideas we encoded in two other projects.
The sensor readings come from the Tweeting Bird Feeder, and the state machine
for the open or closed status was copied from the Water Level Notifier. As such,
here is the complete sketch.

® #include <AFMotor.h>

©) #define LIGHT_PIN 0
#define LIGHT_THRESHOLD 800
#define TEMP_PIN 5

#define TEMP_THRESHOLD 72
#define TEMP_VOLTAGE 5.0

#define ONBOARD_LED 13
® 1int curtain_state = 1;
int light_status =0;

double temp_status 0;

boolean daylight true;

boolean warm false;

AF_Stepper motor(100, 2);

@ void setup() {
Serial.begin(9600);
Serial.println("Setting up Curtain Automation...");
// Set stepper motor rotation speed to 100 RPMs
motor.setSpeed(100);
// Initialize motor
// motor.step(100, FORWARD, SINGLE);
// motor.release();
delay(1000);

® void Curtain(boolean curtain_state) {
digitalWrite(ONBOARD_LED, curtain_state ? HIGH : LOW);
if (curtain_state) {
Serial.println("Opening curtain...");
// Try SINGLE, DOUBLE, INTERLEAVE or MICROSTOP

http://media.pragprog.com/titles/mrhome/code/CurtainAutomation/CurtainAutomation.pde

motor.step(800, FORWARD, SINGLE);

} else {
Serial.println("Closing curtain...");
motor.step(800, BACKWARD, SINGLE);

b

® void loop() {

// poll photocell value
light_status = analogRead(LIGHT_PIN);
delay(500);

// print light_status value to the serial port
Serial.print("Photocell value = ");
Serial.println(light_status);
Serial.println("");

// poll temperature
int temp_reading = analogRead(TEMP_PIN);
delay(500);

// convert voltage to temp in Celsius and Fahrenheit
float voltage = temp_reading * TEMP_VOLTAGE / 1024.0;
float temp_Celsius = (voltage - 0.5) * 100 ;

float temp_Fahrenheit = (temp_Celsius * 9 / 5) + 32;
// print temp_status value to the serial port
Serial.print("Temperature value (Celsius) = ");
Serial.println(temp_Celsius);
Serial.print("Temperature value (Fahrenheit) = ");
Serial.println(temp_Fahrenheit);

Serial.println("");

if (light_status > LIGHT_THRESHOLD)
daylight = true;

else
daylight = false;

if (temp_Fahrenheit > TEMP_THRESHOLD)
warm = true;

else
warm = false;

switch (curtain_state)

{

case 0:
if (daylight && !warm)
// open curtain

{
curtain_state = 1;
Curtain(curtain_state);

}

break;

case 1:
if (!daylight || warm)
// close curtain

{
curtain_state = 0;
Curtain(curtain_state);

}

break;

Reference the AFMotor library that will be used to drive the stepper motor
attached to the Adafruit motor shield.

We will define several values up front. This will make it easier to change the
LIGHT_THRESHOLD and TEMP_THRESHOLD values as we refine the stepper motor

trigger points.

Variables for storing curtain state—as well as the analog values of the
photocell and temperature sensors two boolean variables, daylight and warm—
are used in the main loop’s conditional statements to identify the status of
daylight and the indoor room temperature. We also assign the number of
steps per revolution (in this case, 100) and the motor shield port that the
stepper motor is attached to (in this case, the second port per the wiring
diagram) by creating an AF_Stepper object called motor.

Here’s where we initialize the serial port to output the light and temperature
readings to the Arduino IDE serial window, as well as initialize the speed of
the motor (in this case, 100 revolutions per minute).

The Curtain function will be called when the light or temperature thresholds
are exceeded. The state of the curtains (open or closed) is maintained so that
the motor doesn’t keep running every second the threshold is exceeded. After
all, once the curtains are opened, there’s no need to open them again. In fact,
doing so might even damage the stepper motor, grooved pulley, or curtain
drawstring.

If the Curtain function receives a curtain_state of true, the stepper motor will
spin counterclockwise to open the curtains. A curtain_state value of false will
spin clockwise to close the curtains.

We will also use the Arduino’s onboard LED to indicate the status of the
curtains. If the curtains are open, the LED will remain lit. Otherwise, the
LED will be off. Since the motor shield will be covering the top of the
Arduino, the onboard LED won’t be easily visible, but it will still serve as a
good visual aid for debugging purposes.

The main loop of the sketch is where all the action happens. We poll the
analog values of the photocell and temperature every second, convert the
electrical value of the temperature sensor both to Celsius and—for those who
have yet to convert to the metric system—Fahrenheit. If the light sensor
exceeds the LIGHT_THRESHOLD value we assigned in the #define section of the
sketch, then it must be daytime (i.e., daytime = true). However, we don’t want
to open the curtains if it’s already warm in the room, since the incoming
sunlight would make the room even warmer. Thus, if the temperature status
exceeds the TEMP_THRESHOLD, we will keep the curtains closed until the room
cools down. After checking the status of the curtain_state, we will pass a new
state to the Curtain routine and open or close the curtains accordingly.

Verify, download, and execute the sketch on the Arduino. Leave the Arduino
tethered to your computer and open the Arduino IDE’s serial window to see the
light and temperature values being captured by the sensors. Now we can verify
whether exceeding the threshold values produces the desired effect of activating
the stepper motor (see Figure 34, Test the Curtain Automation sketch).

Test the Curtain Automation sketch first by covering the photocell with your
finger to verify that the stepper motor rotates the shaft in the counterclockwise
direction. Remove your finger, and the shaft should rotate clockwise the same
number of times. Blow warm air or use a blow dryer to warm up the air around
the temperature sensor. When the threshold is exceeded, the stepper motor shaft
should spin clockwise. This translates to open curtains being closed. Before
removing the heat source, cover the photocell with your finger again. Then
remove the heat source. The stepper motor shaft should remain motionless.

Figure 34. Test the Curtain Automation sketch

Remove your finger from the photocell. If the air surrounding the temperature
sensor has cooled, the shaft should rotate counterclockwise. If it doesn’t rotate,
blow air on the temperature sensor to cool it down; it should react once the
temperature drops below the target threshold. Verify that your sketch reacted
when the designated threshold values for light and temperature were exceeded.
You may need to tweak these threshold values to ensure that the stepper motor
reacts when the desired light densities and room temperature are attained. You
may also need to consider omitting a light or temperature sensor range for the
assigned threshold values. Otherwise, the stepper motor may act a bit jittery as

the light or temperature wavers back and forth between triggered threshold
values.

After you have confirmed that the sensors are properly reporting their values and
the stepper motor shaft moves when the threshold values are exceeded, we can
seat the sensors on a windowsill and mount the stepper motor on the wall next to
the curtains. Once the system is working, you can also choose to reposition the
sensors anywhere inside the room as long as the wire attaching the sensors to the
Arduino board is long enough. If you do so, make sure that the wire and sensors
are not in an area where they might accidentally be stepped on or where the
connecting wire could be tripped over.

8.7 Installing the Hardware

When setting up the sensors, you can leave them seated in the small breadboard
we used during the testing of the Curtain Automation sketch. I used a piece of
foam double-sided tape to keep the breadboard seated in place, with the sensors
pointing toward the window like a high-tech flower box. Also, the stepper motor
tends to get very warm when in use, so as an added safety precaution, be sure to
mount the motor away from anything flammable. For example, make sure the
stepper motor is mounted away from the curtains or shade that you’re opening
and closing!

Measure the distance from the breadboard sitting on the windowsill to where you
want to place the Arduino+motor shield. The Arduino can be mounted on a
table, in an enclosure, or even on the wall if you prefer. I recommend using an
extra foot or two of wire wrapped in a loop just in case you need to relocate the
Arduino later. Also take into account the placement of the 12V power supply
brick and the electric cord that has to plug into the Arduino to power the
Arduino, the motor shield, and the stepper motor.

Figure 35. Curtain Automation, installed and calibrated

Slip the rubber-grooved pulley wheel onto the stepper motor shaft. Loop the

curtain drawstring around the pulley wheel. Pull the stepper motor down until
the drawstring is taut around the pulley wheel. Before permanently mounting the
stepper motor, attach the four angle brackets to it using double-sided foam tape.
The tape will keep the motor in place while you screw in the mounting brackets.
The foam tape will also help dampen vibrations against the wall and keep the
operation quiet when the stepper motor shaft is operating. You may also want to
affix the stepper motor first to the wall, using tape to hold it in place, just to be
sure that the curtain drawstring isn’t looped too tightly or too loosely around the
pulley attached to the stepper motor shaft. Don’t make the string too taut in case
you need just enough slack to allow for recalibration should the string happen to
slip when the pulley spins.

Perform a few tests before screwing the angle brackets to the wall. This will
verify that the drawstring around the pulley has just the right amount of tension
and friction to be pulled by the rotating pulley when the stepper motor runs.
When you’re satisfied with the placement of the stepper motor, screw the four
angle brackets into the wall.

Calibrate the speed and number of revolutions that the stepper motor needs to
make to fully open and close the curtains. Start in small increments at first,
remembering to apply the same number of revolutions in both clockwise and
counterclockwise directions. You can estimate the number of revolutions needed
to draw the curtains open and closed by measuring the distance that the
drawstring moves with each revolution of the pulley. Divide this by the total
distance that the curtains need to move to completely open and close. This will
give you the total number of stepper motor shaft rotations you need to program
to open and close the curtains.

Distance curtain moves with one stepper motor shaft rotation = 5 centimeters
Total distance curtain needs to move from start to finish = 90 centimeters
90 cm / 5 cm = 18 rotations

When the system is perfectly calibrated, mark the drawstring with a felt marker

at the points where the string meets the pulley when the curtains are opened and
closed. This will help should you need to recalibrate the drawstring if it falls out
of sync over time. Once configured, your setup may look like Figure 35, Curtain

Automation, installed and calibrated.

Test the system a few times by covering the photocell and artificially heating the
temperature sensor with your breath or a blow dryer. Observe when the photocell
triggers the curtain opening and closing events. If it’s too sensitive or opens the
curtains as a result of indoor light reflecting off the glass, you may need to
reposition the photocell in a different location. I taped the sensor to a corner of
the window using black electrical tape. This helped minimize the sensor from
being exposed and reacting to indoor room lighting.

Allow the assembly to run a few days, noting when the curtains should react to
light or temperature triggering the sensors. Alter the temperature and light
sensitivity values accordingly. Once everything is set up correctly, you should
only need to check on the curtain string’s position once every couple of weeks
for any recalibration adjustments. After a while, you will simply take the
autonomous curtains for granted. Visiting guests seeing the curtains in operation
for the first time will be amazed by your high-tech handiwork.

8.8 Next Steps

The motor shield can handle up to two stepper motors at a time. This might be
useful in a large room with more than one window. The curtains’ pulley systems
can also be linked together so that a single stepper motor could open and close
multiple curtains/shades. Going even further, the stepper motor/motor shield
combination can be employed in a number of other home automation scenarios.

e FElaborate on the curtain pulley with more sophisticated curtain rod systems
that have an interior up/down window blind and exterior left/right curtain
draw. Time one motor to raise/lower the blind followed by opening/closing
the decorative exterior curtain. Modify these two configurations based on
heat and light (i.e., if hot daylight, open curtain but close blind).

e Add a PIR sensor to the Arduino+motor shield assembly so you can open
and close the curtains when motion is detected in the room.

e Network-enable the curtain automation assembly with an onboard LED or
an Arduino Ethernet so you can open and close your curtains from your
smartphone or write a script that will operate the curtains during certain
times of the day.

e Keep the Arduino with motor shield assembly connected to the USB port of
your computer and drive the curtains remotely via USB-to-serial
communication. Set up a web application server to expose the open/close
methods as web services to be called from a native smartphone application.
Write a script that runs on the host computer to open and close the curtains
at a specified date and time.

¢ Repurpose the pulley system for Halloween fun by swapping out the light
and temperature sensors with a motion sensor. Attach the pulley string to
big paper spiders that go up and down when motion is detected.

e Create a stepper motor-driven carousel for clothing with unique RFID tags
affixed to each hanger. Queue up a random outfit or base the selection on

criteria such as day, month/season, and current outdoor temperature. Make a
phone or tablet app that allows you to gesture to a photo of your desired
outfit onscreen and then have that clothing selection waiting for you front
and center in your closet.

Footnotes

[78] https://www.adafruit.com/products/324

[79] http://www.adafruit.com/products/81

[80] https://www.adafruit.com/products/352

[81] https://www.adafruit.com/products/165

[82] http://www.ladyada.net/make/mshield/make.html

[83] https://github.com/adafruit/Adafruit-Motor-Shield-library

[84] http://www.ladyada.net/make/mshield/use.html

Copyright © 2012, The Pragmatic Bookshelf.

https://www.adafruit.com/products/324
http://www.adafruit.com/products/81
https://www.adafruit.com/products/352
https://www.adafruit.com/products/165
http://www.ladyada.net/make/mshield/make.html
https://github.com/adafruit/Adafruit-Motor-Shield-library
http://www.ladyada.net/make/mshield/use.html

Android Door Lock

Tired of carrying around old-fashioned metal keys to your home? You’re
probably already carrying a smartphone. Wouldn’t it be much more convenient
to open your front door via an app that you built for your smartphone instead?
Wouldn’t it also be a nice security feature to take a photo of the person(s)
unlocking your door with this app and email that captured photo as an
attachment to yourself? (See Figure 36, Open doors wirelessly using a

smartphone.)

In this project, we are going to use an inexpensive, first generation Android
phone. We will connect it to a Sparkfun IOIO (“yo-yo0™) board and a relay switch
to operate an electrified door latch. The first-gen Android phone will run a server
that will respond to your unlock requests sent from a second Android phone
running the door unlock client. When the unlock request is triggered, the server
phone will snap a photo using the phone’s built-in camera and silently email the
captured image to you. Let’s go and make it!

Figure 36. Open doors wirelessly using a smartphone

9.1 What You Need

I originally designed this project using a relay switch that we would have
constructed part by part. This relay would have been used to turn on and off the
power to the electric door latch. But after reviewing the potential safety hazards
associated with improper wiring and handling of the circuit, I decided to take a
safer, more conservative approach.

Instead of wrestling with the potentially jolting perils of accidental relay shocks,
we will use a product specifically designed to address these concerns. Called the
PowerSwitch Tail 11, this simple switch houses a relay that can control standard
120V electrical devices. The relay can be energized via a 5V signal from a
digital pin of a microcontroller board such as an Arduino or, in the case of this
project, the PIC-based IOIO board. The PowerSwitch Tail’s prebuilt relay circuit
is far easier and safer than building your own, and the cost is quite reasonable
compared to the expense of procuring and assembling these parts on your own.

Rather than using an Arduino connected to a computer for data processing and
control, we are going to use an Android phone connected to Sparkfun’s IOIO
board. This hardware combination will serve the same function as an
Arduino/PC coupling but without the size, bulk, and energy requirements that an
always-on Arduino/PC combination would entail.

So what exactly is an IOIO board? It is a hardware bridge that allows Android
phones to communicate with whatever sensors and motors are connected to the
board. The IOIO board connects to the phone via Android’s USB debugging
pathway. This pathway can be used to send and receive signals to and from the
IOIO’s onboard PIC processor.

IOIO’s designer, Google software engineer Ytai Ben-Tsvi, designed the IOIO
prior to Google’s official Open Accessory Protocol (ADK) initiative,[85] but he
is working to make the board fully compatible with the ADK specification. The
ADK is part of Google’s Android@Home home automation initiative. Investing
in the board not only gives you the tools you need to make it work today, but it

will also play nice with the future Android@Home APIs. And even more
importantly, the IOIO works especially well today for custom projects like the
one we will build.

Here is a list of all the parts we will need to construct the Android Door Lock
(refer to the photo in Figure 37, Android Door Lock parts (some preassembled)):

Figure 37. Android Door Lock parts (some preassembled)

1. A PowerSwitch Tail II (PN 80135)[86]

2. A 2.1mm female barrel jack cable to safely connect the 12V power supply
to the electric door strike[87]

3. A5VDC 1A power supply[88]
4. A 12V 5A switching power supply to electrify the electric door strike[89]
5. Three pieces of wire

6. An Android OS smartphone with a built-in camera, preferably the original
Android G1 phone. This phone can be purchased from sites like
http://craigslist.org or http://ebay.com for under $100 US. Note that not all
Android phones are compatible with the IOIO Board. Check the IOIO

http://craigslist.org
http://ebay.com

Board discussion group for more details.[90]

7. Abarrel jack to 2-pin JST cable that will connect to the IOIO board’s JST
right angle connector[91]

8. A Sparkfun IOIO Board with JST right angle connector[92]
9. A Smarthome Electric 12VDC Door Strike[93]

10. A standard A to Mini-B USB cable to connect the G1 Android phone to the
USB port on the 1010 board

You will also need a second Android device (phone, tablet, etc.) that can run the
Door Lock client application along with the Eclipse IDE, Android SDK 1.5 or
higher, and the Android Development Tools (ADK) plugin for Eclipse. Refer to
the Chapter 7, WebEnabled Light Switch project for more details about the
Android development requirements.

While this project is one of the most expensive to build in this book, it is also
one of the most flexible in terms of reusing and extending the hardware
investment. Once you become familiar with how to leverage the IOIO board
with an Android phone, you will understand why Google is so enthusiastic about
their Android@Home effort. You will also learn how you can easily create a new
category of home automation applications implementing your own ideas. But
before you can attain those greater heights of actualization, you have to
understand the basics. That’s what we’re going to do in the next section.

1010 Successor?
Sparkfun announced a new, ADK-compliant development board based on the
Arduino Mega ADK that uses Google’s Open Accessory protocol. Called the
Electric Sheep,[94] this new board also features an onboard FTDI header and DC
power connector, obviating the need for the separate components required by
the 1010. However, the board is also twice as expensive as the 1010 and requires
more power. Fortunately, the Electric Sheep has plenty of analog and digital pins
and can be programmed using Google’s ADK and the Arduino Android Handbag.
[95] As such, this more powerful Android@Home-friendly board will likely replace
the 1010 board in the future.

9.2 Building the Solution

This is a fairly complex project and certainly the most challenging one in the
book. We will spend a majority of the time assembling and testing this project’s
hardware. After the hardware has been tested, we’ll program the Android phone
to talk to the IOIO board, the onboard phone’s camera, and the wireless network.
Then we’ll write a simple Android client application we can execute from
another Android device that will trigger the IOIO board to turn on the
PowerSwitch Tail, which will in turn power the electric door strike that unlocks
the door. Here are the steps we’ll take to assemble, program, and deploy the
Android Door Lock:

1.

Attach the JST connector to the Sparkfun IOIO board so that the IOIO
board can be powered by the 5V power supply.

Tether the Android G1 phone to the IOIO board via the USB cable.

Plug the Smarthome Electric 12VDC Door Strike into the 12V power
supply via the 2.1mm female barrel jack cable.

Connect the PowerSwitch Tail to the IOIO board via three wires for the
PowerSwitch Tail’s power, control, and ground connectors.

Program the Android phone to trigger the PowerSwitch Tail via the IOIO
board.

Snap a photo using the Android phone’s built-in camera when the
PowerSwitch Tail is triggered.

Send the resulting image as a message attachment to a designated email
recipient.

Write a native client application for a second Android device that will be
used to unlock the door strike.

9. Install the Electric Door Strike in the desired doorframe, routing the
electrical wiring to a nearby outlet.

10. Bundle the controller components (the PowerSwitch Tail circuit and the
IOIO board) into an easily accessible wall-mounted lock box that can be
serviced in case parts need to be replaced.

11. Mount the Android phone running the door lock server application near the
entry with the camera lens facing the door so images of those entering can
be easily captured.

The most time-consuming aspects are the soldering of the JST right angle
connector to the IOIO board and the wiring of the circuit between the IOIO
board and the PowerSwitch Tail. Everything else is simply a matter of plugging
into the right segment in the series. Essentially, the 5V power supply plugs into
the IOIO board, the Android phone plugs into the IOIO via the USB cable, the
PowerSwitch Tail, controlled by the IOIO board, plugs into the wall on one side
and the 12V power supply on the other, and the electric door strike plugs into the
12V power supply.

Figure 38. Android Door Lock wiring diagram

The first thing you should do is solder the JST right angle connector to the IOIO
board. It would have been much easier for Sparkfun customers had the connector
been preinstalled on the board. But hey, that’s part of the fun (along with the
terror should something go horribly wrong when an expensive component
accidentally gets fried) that these projects have to offer. Fortunately, soldering
the connector isn’t too difficult and will make powering the board and the
Android phone vastly easier.

After the JST connector is attached to the IOIO board, plug the barrel jack to 2-
pin JST cable into the JST connector on the board and the 5V power supply.
Then attach the Android phone via a USB cable to the IOIO board. You’re
halfway there!

Attach the positive and negative wires of the electric door strike to the positive
and negative leads of the 2.1mm female barrel jack cable. The positive wires are
those with a white strip along the side of the wire casing. Use electrical tape or,
better still, heat shrink tubing to safely cover any exposed wire. Connect the
barrel jack to the 12V power supply.

Test the strike by plugging the 12V power supply into your standard 120V wall
socket. You should see the LED on the power supply light up, followed by an
audible click from the strike. Note that while electrified, you will be able to
move the spring latch on the strike back and forth without much resistance.
Unplug the 12V power supply from the wall and the strike will return to its
fixed, nonelectrified state. Consequently, you should be unable to move the
latch.

Next, let’s connect the PowerSwitch Tail to the IOIO board. Follow along with
Figure 38, Android Door Lock wiring diagram. Using three wires, connect one
from the ground pin on the IOIO board to the the negative lead on the
PowerSwitch Tail.

Connect the middle (control) lead on the PowerSwitch Tail to the IOIO board’s

digital pin 3. Why not pin 0, 1, or 2? That’s because not all IOIO boards can
handle the 5V signal required to electrify the relay in the PowerSwitch Tail.
Pulling 5V from a pin not capable of this voltage could damage the IOIO board.
Refer to the IOIO board wiki or simply flip the IOIO board over and look for the
pins that are enclosed by a white circle.[96] The circle indicates that the enclosed
pin is 5V pullup capable. When wired, your IOIO board should look like the one
shown in Figure 39, Wiring the IOIO board.

Figure 39. Wiring the IOIO board

Finally, attach a wire from the positive lead from the PowerSwitch Tail to any of
the three 5V pins on the left lower corner of the IOIO board. The circuit is
complete.

At this point, nothing will happen until we program the necessary instructions to
turn pin 3 on and off, thereby signaling the PowerSwitch Tail to do the same. As
such, we are going to write a simple Android program with an onscreen toggle
switch that will instruct pin 3 to do just that.

9.3 Controlling the Android Door Lock

Before we can write an elaborate server for the Android phone, we first need to
write a test program that will validate the circuit we constructed in the last
section.

Be sure to have installed the plug-ins for the Android SDK and Eclipse IDE with
the Android Development Tools on your computer. Refer to Chapter 7,
WebEnabled Light Switch, for the steps on how to configure the SDK and IDE if
you haven’t already done so. Then, download the HelloIOIO demo project from
the Sparkfun IOIO tutorial web page.[97] The HelloIOIO project is a simple
application that turns the IOIO’s onboard LED on and off. We are going modify
this simple application by declaring another ToggleButton object in its main.xml

layout file. Then we’ll add four lines of code to the MainActivity.java file that
describe the added ToggleButton action for digital pin 3 on the IOIO.

Import Sparkfun’s HelloIOIO project into the Eclipse environment via the

File - Import — Existing Projects option. If you prefer, you can also load the
modified HelloIOIO-PTS project available from this book’s code download page
that has all the necessary code additions mentioned in this section.

All IOIO board projects rely on the custom I10I0Lib library that must be added to
each IOIO project. Use the following steps to do so:

1. Import the IOIOLib bundle into the Eclipse environment via the same
File - Import — Existing Projects into Workspace menu option.

2. Highlight the HelloIOIO project in the Eclipse Package Explorer pane.
3. Access the Properties option from the Eclipse Project menu.

4. Select Android from the selections on the left column of the Properties
dialog box.

5. Click the Add... button. A Project Selection dialog box should pop up

listing the IOIOLib project. Highlight the IOIOLib item and click the OK

button.

If IOIOLib was successfully imported, it should be listed with a green
checkmark in the Library portion of the Properties dialog box, as shown in
Figure 40, IOIOLib successfully imported and referenced.

e Properties for HellolOIO-PTS
Android -
Resource
Android Project Build Target
Builders
Java Build Path Target Name Vendor Platform APl
Java Code Style M Android 1.5 Android Open Source Project 1.5 3
» Java Compiler [} Android 1.6 Android Open Source Project 1.6 4
» Java Editor ! Android 2.1-update Android Open Source Project 2.1-upda 7
Javadoc Location |_] Android 2.2 Android Open Source Project 2.2 8
Project References | Google APls Google Inc. 2.2 8
Refactoring History - ——————= — B
Run/Debug Settings
Pk Task Repository
Task Tags
Validation Library
WikiText O 1s Library
Reference Project Add
« .. /I0I0LIb 1010Lib :
Remo
Drover
-

'C Restore Defaults :,

(Apply)

'
| Cancel

2

oK)

£

Figure 40. IOIOLib successfully imported and referenced

With the IOIOLib properly referenced, edit the reslayout/main.xml file from the
HelloIOIO project. Add another ToggleButton object to the existing layout by
copying the existing TextView description containing the ToggleButton description of
the toggle button used to turn on and off the IOIO’s onboard LED. Paste it in

right after the original Textview section. Then, rename the android/id value of the

copied toggle button to android:id="@+id/powertailbutton". This will be the reference
accessed in the modified MainActivity class. The modified main.xml file should look
like this:

<?xml version="1.0" encoding="utf-8"?>

<LinearLayout xmlns:android="http://schemas.android.com/apkresandroid"
android:orientation="vertical"
android:layout_width="fill_parent"

android:layout_height="fill_parent”
>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"

android:text="@string/txtLED"

android:id="@+id/title"
/>

<ToggleButton android:text="ToggleButton"
android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:id="@+id/button"
>

</ToggleButton>

<TextView
android:layout_width="fill_parent"
android:layout_height="wrap_content"

android:text="@string/txtPowerTail"

android:id="@+id/title"
/>

<ToggleButton android:text="ToggleButton"
android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:id="@+id/powertailbutton”
>

</ToggleButton>
</LinearlLayout>

Next, add the code for the second toggle button to the MainActivity class that will
turn on and off the signal going to the PowerSwitch Tail. The first addition is the
powertailbutton_ = (ToggleButton) findViewById(R.id.powertailbutton); line, which
associates the powertailbutton_ object with the powertailbutton toggle button
defined in the main.xml file.

http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/HelloIOIO-PTS<i>res</i>layout/main.xml

With the user interface addition of the toggle button for the PowerSwitch Tail,
we can add the object reference to the MainActivity class located in the

srcioio/examples/hello/pts/MainActivity.java file:

AndroidDoorLock/HelloIOIO-PTSsrcioio/examples/hello/pts/MainActivity.java

private ToggleButton button_;
private ToggleButton powertailbutton_;

Instantiate the powertailbutton_ object in the MainActivity OnCreate method, like this:

AndroidDoorLock/HellolOIO-PTSsrcioio/examples/hello/pts/MainActivity.java

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
button_ = (ToggleButton) findViewById(R.id.button);
powertailbutton_ = (ToggleButton) findViewById(R.id.powertailbutton);

So when the main application window is created, the toggle button for the
PowerSwitch Tail will now be accessible via the MainActivity class. All that

remains is the code needed to listen for the powertailbutton_ toggle action being
turned on and off:

AndroidDoorLock/HelloIOIO-PTSsrcioio/examples/hello/pts/MainActivity.java
class I0I0Thread extends AbstractIOIOActivity.IOIOThread {
/** The onboard LED. */
private DigitalOutput led_;

O] private DigitalOutput powertail_;
/**
* Called every time a connection with IOIO has been established.
* Typically used to open pins.

*

* @throws ConnectionLostException

* When IOIO connection is lost.
* @see ioio.lib.util.AbstractIOIOActivity.IOIOThread#setup()
*/

@Override

protected void setup() throws ConnectionlLostException {
led_ = ioio_.openDigitalOutput(0, true);
©) powertail_ = ioio_.openDigitalOutput(3,true);

http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/HelloIOIO-PTS<i>src</i>ioio/examples/hello/pts/MainActivity.java
http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/HelloIOIO-PTS<i>src</i>ioio/examples/hello/pts/MainActivity.java
http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/HelloIOIO-PTS<i>src</i>ioio/examples/hello/pts/MainActivity.java

/**

Called repetitively while the IOIO is connected.

*

*

* @throws ConnectionlLostException

* When IOIO connection is lost.

*

* @see 1oio.lib.util.AbstractIOIOActivity.IOIOThread#loop()
*/

@0verride

protected void loop() throws ConnectionLostException {

led_.write(!button_.isChecked());

©)] powertail_.write(!powertailbutton_.isChecked());
try {
sleep(10);
} catch (InterruptedException e) {
}
}
}
@

Initialize the DigitalOutput powertail_ object.
Assign the powertail_ object to the IOIO’s digital pin out 3.

Turn on or off the digital signal (i.e., make it High or Low) to IOIO’s digital
pin out 3 when the onscreen toggle button for the PowerSwitch Tail is
toggled on or off.

When the onscreen PowerSwitch Tail toggle button is switched on, it will
instruct the powertailbutton_ instance to send a 5V signal from digital pin 3. This in
turn will electrify the PowerSwitch Tail relay to power on, which will then

electrify the 12V power adapter that will ultimately electrify and release the
lock.

Save your changes, compile the Android application, and install the modified
HelloIOIO program on the phone. Check to ensure that your door hardware
circuit is properly wired and powered. Then plug in the USB cable between the
phone and the IOIO board and execute the modified HelloIOIO program on the
phone.

If nothing happens, verify that the USB Debugging option is checked on the
phone. Also, make sure your wiring is connected correctly. If you have access to
a multimeter or an oscilloscope, check to see that 5 volts are flowing from the
digital pin 3 when the onscreen PowerSwitch Tail toggle switch is set to the on
position. If the output is less than 5 volts, there will not be enough of a signal
from the IOIO board to electrify the PowerSwitch Tail and thus power the
electric door latch.

Now that the hardware is working properly, we will network-enable the lock so
we can open it by requesting a URL from a web server that we will add to this
modified HelloIOIO program.

9.4 Writing the Android Server

Time to write the door lock server. Instead of relying on a personal computer to
perform the heavy lifting of running Python scripts to respond to incoming
requests, we are going to use the computing power embedded in the Android
smartphone itself. Even older Android phones are computationally more
powerful than desktop computers were only a few years before the Android OS
was introduced.

Besides, an Android phone acting as this project’s server offers a number of
advantages:

e Power requirements are far lower than a desktop computer, making for
much greener energy consumption.

e The phone has onboard Wi-Fi, allowing it to be placed anywhere within
range of the home’s wireless access point.

e The phone has an onboard camera that can be programmed using standard
SDK calls to capture images.

e The phone has other features like Bluetooth and speech synthesis that we
will be using in the Chapter 10, Giving Your Home a Voice project.

The phone-based web server application will need to perform the following
functions:

1. Establish a standard web server instance and listen for inbound requests for
a specific URL.

2. When the URL is requested, send a signal for five seconds to power I0IO
board pin 3. This will release the electric lock long enough to allow entry.

3. After the five seconds, use the built-in camera on the web server host
device to take a photo of the person entering the door.

4. Send the captured image as an email attachment to a designated recipient.

5. Return to an idle state and await another properly formatted inbound
request to begin the cycle anew.

In order to construct the web server, we will borrow code snippets from the open
source GNU GPLv3 Android Web Server project available on Google Code.[98]
We will also incorporate code (generously posted by Jon Simon) for sending
email messages with attachments from an Android application without having to
rely on intents to do so. [99]

iy
< What Is an Android Intent?

According to the Android developer documentation, an intent is “an abstract description of an
operation to be performed.”[100] In layman’s terms, intents are used to transmit and receive messages
between Android activities and services. Intents can also send messages to the same application that
generates them, though intents are more frequently used to send a message from one application, say a
web browser that has downloaded an audio file, to another application, such as a music program.

When multiple applications have been registered to receive certain Intent messages, a pop-up dialog
box might appear, asking the user to select which application to send the message to. If you’re an
experienced Android device user, you have no doubt seen this pop-up appear at one time or another.
Android allows users to select via a checkbox in the pop-up dialog the default application to send such
messages to so as not to annoy you with chronic pop-ups all the time.

As a result of such user interaction requirements, intents are rarely optimal for entirely autonomous
operations, such as sending email, since the message receiving the Intent message (in this case, an
email application) might still require user interaction to complete the intended action (i.e., the user
would need to click the Send button in the email program to actually send the email message initiated
by the original Intent-transmitting program).

Since most intents typically rely on user interaction, it won’t work for our
standalone web server scenario. Combining these two projects with the IOIO
code will allow our program to autonomously listen for and react to door unlock
requests. Lastly, we will rely on bits of Camera Sample code written by
Krishnaraj Varma to capture an image and save it on the Android’s SD card.
[101] It will be this image that we will send as an email attachment. However,
before we can start working on this Android program mashup, we need a more

definitive way to access the IP address of the Android phone.

Setting a Static IP Address

By converting the phone’s Wi-Fi IP address from a dynamic to a static address, it
will be much easier to repeatedly locate the phone on a home wireless local area
network. If you haven’t already created a static IP range on your wireless router,
either do so or set the IP address to something higher than 200, since it’s unlikely
you will have that many devices requesting an IP address from the DHCP server
in your wireless router anytime soon.

You can access the configuration setting on most Android phones by selecting
the Settings icon, followed by the Wireless and Network menu selection. Then
select Wi-Fi settings and press the menu button on the Android phone itself to
bring up a pop-up menu with Scan and Advanced selections. Click the Advanced
menu option. You will then see a screen of menu choices allowing you to modify
a number of network settings, one of which is a Use static IP checkbox. Click
that checkbox to enable the ability to set the Wi-Fi radio’s IP, subnet, and
gateway address as shown in Figure 41, Configuring an Android device to use a
static IP. Set these according to your wireless router network configuration. For
example, if your wireless network router is leasing an address range beginning at
192.168.1.2, your settings can most likely be configured to the following:

rﬂﬁ B EDE® 1:33em
Advanced:

IP settings

Use static [P
1 address
ey
Nemask

DNS 1

DNS 2

Figure 41. Configuring an Android device to use a static IP

e [P Address: 192.168.1.230
e (Gateway: 192.168.1.1
e Netmask: 255.255.255.0

Set the DNS1 and DNS2 values to the DNS address of your choice (I used
Google’s Public DNS in my configuration), though it’s best to set these
addresses to the same domain name servers that your other network clients are
using to maintain consistency on your local area network. When you have
entered the static values, click the Menu button on your Android device and
select the Save option.

Test access to the static IP on the phone by pinging it from another computer on
your network. If you set up the static IP address information successfully, you
should see positive ping results. If not, check your settings and be sure to save
your changes. With the static IP address confirmed, we’re ready to proceed with
writing and testing some Android web server code.

Creating an Android Web Server

Android runs a modified version of the Java Virtual Machine and as such, brings
to it a number of standard Java libraries. That’s a good thing, since one of the
libraries helps to make creating and running a web server trivial by using just a
few lines of code.

Rather than taking up book space showing the contents of the dozens of files that
comprise the full program listing, visit the book’s website and download the
DoorLockServer.zip file. Once downloaded and uncompressed, import the project
into your Android SDK-configured Eclipse environment via the File->Import...
menu option. If you examine the file’s contents, you will notice a file named
AndroidDoorLockServerActivity.java. Look for the two lines of code in the private void
startServer(int port) method that uses the Android phone’s Wi-Fi IP address, port

number, and default message handler to start the web server on the phone.

server = new Server(ipAddress,port,mHandler);
server.start();

This instruction imports the ServerSocket reference and tells Android to listen
for requests on port 80 on our assigned static IP address. Naturally, there is much
more to manage, such as starting and stopping the server from the Ul, making
the server a service so Android keeps it running in the background, keeping the
phone from entering sleep mode, acting on inbound requests, and handling
errors.

Now that we have the basic requirements for running a web server from an
Android device, the next task we need to tackle is to combine it with the IOIO
board functionality we enabled in Section 9.3, Controlling the Android Door
Lock.

Web Server + 1010 Board

This is where things get interesting. By combining the IOIO test application we
wrote in Section 9.3, Controlling the Android Door Lock, with the web server in
the last section, an inbound HTTP request will trigger digital pin 3 on the IOIO
board. This will signal the PowerSwitch Tail to allow power to go to the electric
door strike. Essentially, we will transplant the IOIO trigger routine into the web
server’s response to an HTTP request. For example, calling a URL like
http://192.168.1.230 will ultimately energize the door lock and allow entry.

We don’t want to leave the door permanently unlocked by keeping digital pin 3
on, so we will have to turn off power after a set amount of time. Five seconds
should be adequate for our testing purposes. To do so, we will call upon
Android’sThread.sleep() function to pause program execution for a set duration.
Experienced Android application developers know that this isn’t the most
elegant way to handle pausing program execution because it can make user
interface elements appear unresponsive. However, since the Android device will
be used as a server rather than a client, we won’t have to worry too much about
optimizing the interactive user experience for this program. I set the delay to five

seconds (Thread.sleep(5000)), though you’re welcome to change that value to close
the lock sooner or later, depending on your response time needs.

As before, refer to the code in the DoorlLockServer.zip file. Open the project in
Eclipse and focus on the AndroidDoorLockServerActivity class. Note the use of the try

block that activates power to the PowerSwitch Tail for five seconds and makes
the camerasurface.startTakePicture() call to the photo capture routine that will use the

built-in Android camera.

@0verride
protected void loop() throws ConnectionLostException {

if (mToggleButton.isChecked()) {
if (LockStatus.getInstance().getlLockStatus()) {
try {
powertail_.write(false);
// pause for 5 seconds to keep the lock open
sleep(5000);
powertail_.write(true);
LockStatus.getInstance().setMyVar(false);
// Take a picture and send it as an email attachment
camerasurface.startTakePicture();
} catch (InterruptedException e) {
}

telse {

try {

sleep(10);
} catch (InterruptedException e) {

} else {
powertail_.write(true);

Compile and run this DoorLockServer project on your Android device. Start the
web server on your Android device. Make sure it is properly connected to the
IOIO board and the board is correctly wired to the PowerSwitch Tail. Access the
IP address of the web server using any web browser that can access your local

http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/DoorLockServer/src/com/mysampleapp/androiddoorlockserver/AndroidDoorLockServerActivity.java

area network. If all goes according to plan, your electric door lock should unlock
for several seconds and then relock. Cool!

We’re two-thirds finished with this project. The final component is to take
advantage of the fact that most Android devices (at least the Android phones)
have a built-in camera. We’re going to take advantage of that hardware asset by
snapping a photo inside the door area several seconds after an unlock request
and sending that photo to a designated email recipient. This way you know not
only when an unlock request occurred but also who entered the door at the
designated time.

Taking a Picture

For this part of the project, examine the CameraSurface.java file in the unzipped
DoorLockServer directory. The key functions used to establish a camera surface and
image capture are well documented in the Android SDK, and literally hundreds
of Android photo-capturing code snippets and tutorials are available on the
Internet.[102] I based the image capture portion of the web server application off
of Android developer Krishnaraj Varma’s Camera sample.

Setting up the camera for use in an Android application requires us to import
several Android namespaces. To do so, we will need to perform a few additional
steps to set up the display surface. The key libraries being used by the image
capture portion of the program included in the DoorLockServer.zip file are as

follows:

import android.content.Context;

import android.hardware.Camera;

import android.hardware.Camera.AutoFocusCallback;
import android.hardware.Camera.PictureCallback;
import android.hardware.Camera.ShutterCallback;
import android.util.AttributeSet;

import android.view.GestureDetector;

import android.view.MotionEvent;

import android.view.SurfaceHolder;

import android.view.SurfaceView;

import android.view.GestureDetector.OnGesturelListener;

http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/DoorLockServer/src/com/mysampleapp/androiddoorlockserver/CameraSurface.java

In addition to accessing the camera hardware itself, we also need to have the
phone display a preview of the image being captured by the camera. To do so,
we will first have to initialize the camera frame and surface variables:

private FramelLayout cameraholder = null;
private CameraSurface camerasurface = null;

These are used to allocate the surface and frame objects accordingly:

camerasurface = new CameraSurface(this);
cameraholder.addView(camerasurface, new
LayoutParams(LayoutParams.FILL_PARENT, LayoutParams.FILL_PARENT));

Krishnaraj uses callbacks to wait for certain operations to finish before
proceeding. Examples of this include waiting for autofocus to set, waiting for the
shutter to close, and waiting for the validation that image data has been
successfully written to the SD card. The use of callbacks ensures that these
events happen in serial fashion such that one won’t begin until the other ends.

public void startTakePicture(){
camera.autoFocus(new AutoFocusCallback() {
@0verride
public void onAutoFocus(boolean success, Camera camera) {
takePicture();

)

public void takePicture() {
camera.takePicture(

new ShutterCallback() {
@0Override
public void onShutter(){

if(null != callback) callback.onShutter();

b

}

new PictureCallback() {

@Override

public void onPictureTaken(byte
[1 data, Camera camera){

if(null != callback) callback.onRawPictureTaken(data, camera);

http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/DoorLockServer/src/com/mysampleapp/androiddoorlockserver/CameraSurface.java

}

}I
new PictureCallback() {

@Override

public void onPictureTaken(byte
[1 data, Camera camera){

if(null != callback) callback.onJpegPictureTaken(data, camera);

}
1DK

The act of writing data to the SD card occurs in the onjpegPictureTaken event.
Since this image file is going to be sent as an email attachment and it’s not
necessary to store successive captures on the SD card, the image data is saved
with the same filename each time a photo is taken.

FileOutputStream outStream = new FileOutputStream(String.format(
"sdcardcapture.jpg"));

outStream.write(data);
outStream.close();

Note that if you prefer to store each progressive image capture on the phone’s
SD card rather than overwrite it with the same filename, you can append a
timestamp to the suffix of the filename using Krishnaraj’s original Camera code:

FileOutputStream outStream = new FileOutputStream(String.format(
"sdcard%d.jpg", System.currentTimeMillis()));

However, I don’t recommend this approach unless you have plenty of storage
capacity on your SD card and don’t mind the duplication of image data on the
phone and in your email inbox. If you do opt for this file naming method, you
will also need to save the timestamped filename so you can later pass it when
calling the email attachment instruction in the program. Now let’s look at how to
attach the image data to the email and send it.

Sending a Message

Now that we have captured and stored the camera-captured temporary image on
the Android’s SD card, we need to rely on a self-contained email routine that

will email the attached photo without any user interface interaction. Fortunately
for this project, we can call upon Jon Simon’s JavaMail for Android-enhanced
email routine. Download and reference the custom JavaMail for Android jar
dependencies for Jon’s email code to work properly.[103] We can then modify
the code to account for our image attachment needs. To do so, we first need to
import a number of Java libraries used by the JavaMail class:

import java.util.Date;

import java.util.Properties;

import javax.activation.CommandMap;

import javax.activation.DataHandler;
import javax.activation.DataSource;

import javax.activation.FileDataSource;
import javax.activation.MailcapCommandMap;
import javax.mail.BodyPart;

import javax.mail.Multipart;

import javax.mail.PasswordAuthentication;
import javax.mail.Session;

import javax.mail.Transport;

import javax.mail.internet.InternetAddress;
import javax.mail.internet.MimeBodyPart;
import javax.mail.internet.MimeMessage;
import javax.mail.internet.MimeMultipart;

Methods for public Mail(String user, String pass) and public void addAttachment(String
filename) throws Exception allow us to easily send the captured image file to a

designated recipient. Sending a message is straightforward once the username,
password, recipient, and attachment parameters are defined in onjpegPictureTaken()

found in the AndroidDoorLockServerActivity.java file:

try {
GMailSender mail = new GMailSender ("YOUR_GMAIL_ADDRESS@gmail.com",
"YOUR_GMAIL_PASSWORD");
mail.addAttachment(Environment.getExternalStorageDirectory() +

"/capture.jpg");

String
[1 toArr = {"EMAIL_RECIPIENT_ADDRESS@gmail.com"};

mail.setTo(toArr);
mail.setFrom("YOUR_GMAIL_ADDRESS@gmail.com");
mail.setSubject("Image capture");
mail.setBody("Image captured - see attachment");

if(mail.send()) {

Toast.makeText(AndroidDoorLockServerActivity.this,
"Email was sent successfully.",
Toast.LENGTH_LONG).show();

} else {

Toast.makeText(AndroidDoorLockServerActivity.this,
"Email was not sent.",
Toast.LENGTH_LONG).show();

}
} catch (Exception e) {
Log.e("SendMail", e.getMessage(), e);

Replace YOUR_GMAIL_ADDRESS@gmail.com, YOUR_GMAIL_PASSWORD, and
EMAIL_RECIPIENT_ADDRESS@gmail.com with your Gmail account credentials. Note

that the recipient does not have to be a Gmail user, so you can send the message
to a non-Gmail account if you prefer to do so.

There are a few other preparatory instructions that are part of the email
transmission process. Examine the downloaded code for a better understanding
of all the dependencies and processes that take place to send a message from an
Android device without user intervention.

Setting Hardware Permissions

We’re almost done. By combining four separate Android programs into one, we
are able to listen for an inbound HTTP request, unlock the electric door latch via
the IOIO board, take a picture using the built-in camera on the Android device,
and send that image as an email attachment.

With the photo capturing and email transmitting code in place, all that remains is
to allow the program to access the camera, Wi-Fi radio hardware, and network to
complete its task. As such, the AndroidManifest.xml file will need to contain
permissions to access not only the network and Wi-Fi stack but also the camera
and SD card:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.mysampleapp.androiddoorlockserver"

android:versionCode="1"
android:versionName="1.0"

<uses-sdk android:minSdkVersion="3" />

<uses-permission android:name="android.permission."
>

</uses-permission>

<uses-permission android:name="android.permission.ACCESS_WIFI_STATE"
>

</uses-permission>
<uses-permission android:name="android.permission.INTERNET"

</uses-permission>
<uses-permission android:name="android.permission.WAKE_LOCK" />

<uses-feature android:name="android.hardware.camera" />
<uses-feature android:name="android.hardware.camera.autofocus"

/>
<uses-permission android:name="android.permission.CAMERA"
/>
<uses-permission android:name="android.permission.VIBRATE"
/>
<uses-permission
android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<application android:icon="@drawable/icon"
android:label="@string/app_name"
>
<activity android:name=".AndroidDoorlLockServerActivity"
android:label="@string/app_name"
android:screenOrientation="landscape"
>
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category
android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

After setting the email account username, password, and recipient values as well
as the IP address for your network, you can compile, install, and run the Android
Door Lock server application on your Android smartphone.

Testing the Server

Test out the Android door lock server by accessing its base URL from a web
browser. Verify that the electric lock releases and that the camera takes a photo
and sends the image to the designated email recipient. If everything worked as

expected, congratulate yourself on a job well done. Considering how many
dependencies are involved with this project, getting everything to work just right
the first time out is indeed a cause for celebration. If something went awry,
carefully troubleshoot each function separately. Does the web server respond to
requests? Does the PowerSwitch Tail electrify? Does the camera shutter snap?
Also, depending on your network connection and the speed of Wi-Fi
connectivity of your Android phone, it can sometimes take up to a minute to
transmit the photo via email.

We have accomplished quite a bit of this project already, and for the most part,
we could simply set a bookmark for the door lock URL and call it a day. But let’s
invest just a little more effort by creating a custom client for accessing the door
lock URL like we did for the Chapter 7, WebEnabled Light Switch project. That
way, we can quickly access the door lock via a one-click button. Indeed, we can
begin amassing our home automation features into a {iber-controller mobile
program that accesses our projects in a single collective interface.

9.5 Writing the Android Client

Writing code for the Android client to send unlock commands to the Android
server is easy. Let’s reuse code from the Web Enabled Light Switch Android
client application to provide easy user access to the door latch function. This
time, we will use a button instead of a toggle switch since we already
programmed the lock to unlock for five seconds. This makes the toggle
unnecessary. Another feature we will add to this application is to turn on the Wi-
Fi radio if it isn’t already active.

Security Implications
One advantage of creating a custom Android client for unlocking a door is so that
we also maintain (albeit very weak) security via obscurity to access the door
lock. By not allowing a display of the bookmark URL on the screen when we
access the web server, we keep its address hidden from nontechnical onlookers.
However, this will only be adequate in low network security scenarios, since the
URL itself is sent to the server in the clear. Later, in the Next Steps section of this
chapter, one of the recommended enhancements is to consider adding better
security to the project. The addition of a passcode or, better still, a sophisticated
multifactor authentication scheme, will be a much better door lock system in the
long run.

The basic flow of the program will be to launch it and check for Wi-Fi access. If
the Wi-Fi radio is turned off, turn it on and wait for the client to connect to the
network. Allow the user to press the displayed Unlock Door button, which will
access the Android Door Lock server URL and unlock the door. Briefly, here are
the steps we will take to code the unlock client:

1. Create an Android project in Eclipse called DoorLockClient.

2. Check if the Wi-Fi radio is on in the program’s main activity. If Wi-Fi is
turned off, activate it.

3. Add a Button to the main.xml layout description and label it “Unlock
Door.”

4. Reference the button in the DoorLock class and a listener for the button
press event. If the Wi-Fi radio is being turned on for the first time when the
program starts, keep the Unlock Door button disabled for a few seconds to
allow the Wi-Fi interface to authenticate with the wireless access point and
establish the client’s IP address.

5. Add the URL request call in the button press event to the Android Door
Lock server (ex: 192.168.1.230).

We will start by following the same procedure used in Section 7.6, Writing the
Code for the Android Client. Create a new Android project in Eclipse using the
parameters shown in Figure 42, Settings for the new Door Lock Client

application.

MNew Android Project

Mew Android Project
Creates a new Android Project resource,

Praoject name: DoorLockClient
Contents
(*) Create new project in workspace
() Create project from existing source

¥ Use default location

Location: /Users/m ke_riley/Projects/java/DoorLock Client Browse

() Create project from existing sample

Samples: | ApiDemos =
Build Target
Target Name Vendor Platform AF

E Android 1.5 Android Open Source Project L5 3

| Android 1.6 Android Open Source Project 16 4 :I
] Android 2.1-updatel Android Open Source Project 2.1-updatel 7

] Android 2.2 Android Open Source Project 2.2 8|°
s Google APIs Google Inc. 2.2 8|Y
[4 F

Standard Android platform 1.5

Properties

Application name: “D-:mr Lock Client

Package name: com, mysampleapp.dooriockelient
W Create Activity: DoorLockClient

Min SDK Wersion:

-~

7 < Back (Next>) Cancel |

-} .f_ Finish J
r-

Figure 42. Settings for the new Door Lock Client application

Add a button called unlockbutton, label its text “Unlock Door,” and set the

button’s width to fill the LinearLayout of the parent container. The main.xml file
should look like this:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent" android:layout_height="fill parent"

<Button android:id="@+id/unlockbutton" android:layout_height="wrap_content"

android:text="Unlock Door" android:layout_width="fill_parent"
>

</Button>
</LinearlLayout>

Save the changes. Open the DoorLockClient.java file and add references for the
unlockbutton Button element and its event listener. Also add Wi-Fi radio detection
and activation. The full listing for the DoorLockClient.java class should look like
this:

package com.mysampleapp.doorlockclient;

@ 1import java.io.InputStream;
import java.net.URL;
import android.net.wifi.WifiManager;
import android.widget.Button;
import android.app.Activity;
import android.os.Bundle;
import android.util.Log;

import android.view.View;

public class DoorLockClient extends Activity {
/** Called when the activity is first created. */
@0override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);

@ Button unlockbutton = (Button) findViewById(R.id.unlockbutton);
findViewById(R.id.unlockbutton).setOnClickListener
(mClickListenerUnlockButton);

try {
WifiManager wm =
® (WifiManager) getSystemService(WIFI_SERVICE);

if (!wm.isWifiEnabled()) {
unlockbutton.setEnabled(false);
wm.setWifiEnabled(true);
// Wait 17 seconds for Wi-Fi to turn on and connect
Thread.sleep(17000);
unlockbutton.setEnabled(true);

¥
} catch (Exception e) {

Log.e("LightSwitchClient", "Error: + e.getMessage(), e);

http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/DoorLockClient/src/com/mysampleapp/doorlockclient/DoorLockClient.java

}

View.OnClickListener mClickListenerUnlockButton =

@ new View.OnClickListener() {
public void onClick(View v) {
try {
final InputStream is =
® new URL("http://192.168.1.230:8000").openStream();

b
catch (Exception e) {

}

Import the library references for java.io.InputStream, java.net.URL and Android-
specific android.widget.Button and android.net.wifi.WifiManager.

Add a reference for the unlockbutton Button and assign it to the
mClickListenerUnlockButton View method.

Query the state of the Wi-Fi radio, and if it’s not active, turn the Wi-Fi radio
on. Keep the unlockbutton disabled for seventeen seconds to allow enough

time for the network connection to initialize.

Create the View.OnClickListener for the unlockbutton.

Request the Android door lock server address when the unlockbutton is
clicked.

We have one more task to complete before we can test out the application.
Remember how we had to set permission to access the network for the Web
Enabled Light Switch Android client? We have to do the same thing for this
Door Lock Client. We also have to grant permission to access the state of the
Wi-Fi radio as well. These permissions are noted in the AndroidManifest.xml file,

which should look like this once these two permissions are added:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.mysampleapp.doorlockclient"

android:versionCode="1"
android:versionName="1.0"

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />
<uses-permission android:name="android.permission.CHANGE_WIFI_STATE" />

<application android:icon="@drawable/icon" android:label="@string/app_name"

<activity android:name=".DoorLockClient"
android:label="@string/app_name"

<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>
</application>
</manifest>

Save the project and test it using an available Android phone. First test its
operation with the Wi-Fi radio turned on. The button should be instantly
accessible after the program has launched. Quit the program, preferably using a
task manager (i.e., make sure the running instance of the program is destroyed
and not running silently in the background). Next, turn off the Wi-Fi radio and
launch the Door Lock Client application again. This time, the Unlock Door
button will be disabled while the program turns on the Wi-Fi radio and waits
until a connection with the network has been established. If the radio turned on,
you’re ready for a live test with the door lock server.

Click the Unlock Door button. Within a second or two, the electric lock should
click open and then close approximately five seconds later. If it did,
congratulations on a job well done! If it didn’t, verify that your Android device
is indeed connected to the network. Test the URL access via the Android web
browser. If you can’t access the URL, make sure the Android door lock server is
still set to the static IP we defined earlier and that it is running. Try accessing the
URL from a different system just to verify that the rest of your home network
can access the Android door lock server.

9.6 Test and Install

Now that the Android client is transmitting the URL request via the toggle
button interface, we are nearly finished with this project. Test the lock and photo
capture mechanism by powering up the Android phone server, making sure all
the connections between the phone, IOIO board, and PowerSwitch Tail are
connected. Send a request to the Android phone server from the other Android
device running the Android Door Lock client. Note that in order to test this
request successfully, the client Android device needs to be connected to the same
Wi-Fi access point as the Android phone server. Your test rig may look like mine
(Figure 43, Testing the Android Door Lock).

Figure 43. Testing the Android Door Lock

The final task is to actually install the lock mechanism in the doorframe. This
can be a daunting process if you are not comfortable with boring out wood and
properly routing electrical wiring behind drywall. In fact, I strongly recommend
that if you intend to permanently install this hardware configuration, contact a
reputable carpenter and electrician to assist with the installation. The extra
money you spend will be well worth the safety and security of your home, and it
will keep your sanity intact.

When installing the lock, keep the Android phone, IOIO board, and

PowerSwitch Tail in an easy, accessible location. It should go without saying
that you shouldn’t place these in the wall in case you need to service or replace
any of these components in the future, not to mention that they could pose a fire
hazard if the wiring is not correctly shielded. I suggest obtaining a project box
from an electronics supplier. The box should be large enough to fit all the
components, with room for expansion should you need to house additional
hardware for project enhancements. Always practice safe wiring techniques.
Once a circuit is well established, I prefer soldering components in place and
then covering the exposed conductive surface, like circuit leads and stripped
wiring, with heat shrink tubing to prevent any shorting of the circuit. If you have
an electrician assist with the hardware installation, consult with this professional
about best practices and recommendations as well.

9.7 Next Steps

Congratulations! You have just completed one of the most complex projects in
this book. You have come a long way and acquired a great deal of knowledge
and experience. You now have the ability to automate a variety of electrical
devices in your own home. Our final project will combine a number of these
techniques to create an application that will listen for a number of events and
relay these to you via a text-to-speech interface. But before we get started,
consider expanding your Android Door Lock with these additional features:

e Implement Steve Gibson’s Perfect Paper Passwords to provide a more
secure, multifactor, one-time password authentication scheme.[104] By
using the Perfect Paper Password approach, you will be able to share one-
time use entry codes to anyone requiring secure access to your home, such
as visiting health professionals, house cleaning service personnel, and
maintenance workers.

e Connect a PIR sensor to the IOIO board to capture and transmit motion-
detected events. While the current design does something similar, it can be
problematic if entry to the target area is intentionally or unintentionally
delayed. Take advantage of the numerous other analog and digital pins on
the IOIO board and hook up a PIR sensor like the one we used in Chapter 4,
Electric Guard Dog.

¢ Attach more than one electric door lock to the IOIO Web Server program
and access these locks via different URL paths. For example, open the front
door by accessing http://192.168.1.230/frontdoor, and the cellar door via
http://192.168.1.230/cellardoor.

¢ Go beyond just controlling door locks from an Android phone. Electrify
lights, appliances, computers, and any other electrical device in your home
via the IOIO web server. Expand the web server program on your Android
phone to log events, email status updates, or detect orientation changes (i.e,
someone or something moved the phone) via Android’s compass and

accelerometer sensors.

Footnotes

gs1 http://accessories.android.com

5

http://www.sparkfun.com/products/10747

g

http://www.adafruit.com/products/327

g

http://www.sparkfun.com/products/8269

g

http://www.adafruit.com/products/352

8

https://groups.google.com/group/ioio-users?pli=1

g

http://www.sparkfun.com/products/8734

=

http://www.sparkfun.com/products/10748 and http://www.sparkfun.com/pr

=

http://www.smarthome.com/5192/Electric-Door-Strike-Mortise-Type/p.asp

2

http://www.sparkfun.com/products/10745

E

http://handbagdevices.com/

2

https://github.com/ytai/ioio/wiki

g

http://www.sparkfun.com/tutorials/280

g

98 http://code.google.com/p/android-webserver/

E

991 http://www.jondev.net/articles/Sending Emails_without_User_Interventior

E

[100] http://developer.android.com/reference/android/content/Intent.html

http://accessories.android.com
http://www.sparkfun.com/products/10747
http://www.adafruit.com/products/327
http://www.sparkfun.com/products/8269
http://www.adafruit.com/products/352
https://groups.google.com/group/ioio-users?pli=1
http://www.sparkfun.com/products/8734
http://www.sparkfun.com/products/10748
http://www.sparkfun.com/products/8612
http://www.smarthome.com/5192/Electric-Door-Strike-Mortise-Type/p.aspx
http://www.sparkfun.com/products/10745
http://handbagdevices.com/
https://github.com/ytai/ioio/wiki
http://www.sparkfun.com/tutorials/280
http://code.google.com/p/android-webserver/
http://www.jondev.net/articles/Sending_Emails_without_User_Intervention_%28no_Intents%29_in_Android
http://developer.android.com/reference/android/content/Intent.html

[101] http://code.google.com/p/krvarma-android-samples/

[102] http://developer.android.com/reference/android/hardware/Camera.html

[103] http://code.google.com/p/javamail-android/

[104] https://www.grc.com/ppp.htm

Copyright © 2012, The Pragmatic Bookshelf.

http://code.google.com/p/krvarma-android-samples/
http://developer.android.com/reference/android/hardware/Camera.html
http://code.google.com/p/javamail-android/
https://www.grc.com/ppp.htm

Giving Your Home a Voice

Wouldn’t it be cool to walk into your front door and be greeted by your home,
having it inform you of any important events that occurred while you were
away? How about asking your home to check your email inbox status, read you
the weather forecast, or queue up your favorite music on the stereo? It could also
audibly inform you of triggered sensors in real time, such as telling you about
water-level alerts or birdseed refillings from our first two projects. (See Figure
44, Event notification.) This project will bring those fanciful ideas to life. We
will create a central hub capable of relaying the communication from all the
other projects we built in this book and do so in a natural speaking voice.

Receiving emails and tweets about what’s going on in your home is pretty neat,
but wouldn’t it be even cooler if you could have a conversation with your home?
What if you could ask it questions like “What time is it?” or dictate commands
like “Turn on the lights” or “Listen to music” and have your home respond in
kind. That’s what we’re going to program in this capstone project that brings
together network-enabled projects like the Web-Enabled Light Switch and the
Android Door Lock and controls them via voice command.

While we’re at it, we will hook into a few other nice-to-have vocal commands
like selecting musical artists and their respective albums for audio playback on
the stereo, turning up and down the volume, and so on.

Figure 44. Event notification. Let your home tell you when automation
events occur with your projects.

10.1 What You Need

While we could develop this project on Windows using Microsoft’s Speech API
or on Linux using the open source Festival project, I chose the Mac platform
because I personally find the Text-to-Speech (TTS) renditions in OS X 10.7 (aka
Lion) to be the best of the voices that ship between the three operating systems.
Most Mac users don’t know these voices exist, let alone that downloading
additional OS X voices can expand your choices.

Here are the items you will need to put this project into action:
¢ An Apple Mac computer running OS X 10.7 (Lion) or higher
¢ A home stereo with standard 3.5mm or RCA audio input jacks
¢ One of the following:

o A male-to-male stereo miniplug cable to connect the Mac to your
home stereo, or

o A 3.5mm stereo headphone-to-RCA adapter cable if your stereo only
uses standard RCA input jacks, or

o A wireless Bluetooth speaker, such as the Supertooth DISCO[105]

e A wireless microphone and receiving station, such as the Radio Shack
Wireless Lapel Microphone System[106]

e A 3.5mm headphone-to-USB adapter to send the wireless mic station’s
audio into the Mac, such as Griffin Technology’s iMic[107]

Before we listen to the computer voices, we first need to be able to reproduce the
Mac’s spoken audio on a set of speakers, whether they be attached to the Mac,
connected via a stereo, or transmitted to a wireless Bluetooth speaker.

10.2 Speaker Setup

The speaker being used to amplify the computer’s audio is a key factor in this
project’s success. The speaker needs to be loud enough to be heard from one or
more rooms away and ideally should be heard throughout the house if possible.
Let’s take a look at both wired and wireless approaches.

The quickest way to connect a Mac computer up to a home stereo is by using a
male-to-male 3.5mm stereo headphone to an RCA adapter cable. This cable will
run from the Mac’s headphone jack to the stereo amplifier and/or receiver’s
audio input jack. If your home stereo doesn’t support a 3.5mm input jack, you
will need a 3.5mm female-to-RCA-male audio cable. The length of the cable
needs to comfortably run from the computer to the stereo, so take that into
consideration when purchasing the cable from your preferred audio-video
supplier.

If the computer and stereo are separated by several rooms, you will be running a
lot of wire and probably need to drill a few holes in the process. If you don’t
want to operate the computer in the same room as the stereo and don’t like the
idea of fishing wiring through walls to connect the two, consider a wire-free
alternative. If this is your situation, I recommend using the external Bluetooth
speaker option since it offers the most flexibility.

Pairing an external Bluetooth speaker with the Mac is easy. Simply turn on
Bluetooth on the Mac via the Bluetooth System Preference pane. Then power up
the external Bluetooth speaker and set it to pair with your computer. This is
typically done by holding down the power button on the speaker until the
speaker’s Bluetooth indicator light starts flashing. Then click the Set Up New
Device... button on the Mac’s Bluetooth Preference Pane. This should auto-
detect the Bluetooth speaker. In the case of the Supertooth DISCO speaker, it
displays “ST DISCO R58” on my Mac, as shown in Figure 45, Bluetooth
wireless speaker pairing.

ann Bluetooth Setup Assistant

Welcome to the Bluetooth Setup Assistant.

When your device appears in the list, select it and click Continue. If you
don't see your device in the list, make sure it is powered on and
“discoverable.” For more information, see the documentation that
came with your device.

Devices Type
ST DISCO R58 Loudspeaker

3, Searching for devices - one found

Figure 45. Bluetooth wireless speaker pairing

Select the speaker name. Depending on the Bluetooth speaker you are
connecting to, it may automatically establish a connection or it may require a
four-digit confirmation code such as 0000 or 1234 to be typed in on the screen.
In the case of the Supertooth DISCO speaker, my Mac automatically configured
the speaker without requiring any confirmation codes.

If the discovery and configuration went smoothly, you should receive a
confirmation message on the screen that pairing with the speaker was successful.
Go to the Sound option in System Preferences and select the speaker in the
Output tab. Then use the iTunes music application on your Mac to play back
audio and verify that you can indeed hear the sound reproduced on the paired
speaker. Conclude your pairing confirmation testing by entering the Speech
option in System Preferences and then selecting the Text to Speech tab. Click the
Play button. If you hear the TTS playback on the speaker, your talking Mac
hardware setup is successfully configured. Set the volume on the speaker and
dial up or down the output volume level on the Mac to get the sound output just

right for the audio coverage area you have in mind.

Why Bluetooth Audio?
Bluetooth wireless audio capabilities are available in most Mac computers. Using
it will give you maximum flexibility when placing the computer and external
Bluetooth speaker in different locations. Rather than running an audio cable from
the computer to a stereo, we can rely on high fidelity wireless Bluetooth audio
that can broadcast up to thirty feet away.

There are trade-offs between these wired and wireless audio configurations. If
you need the convenience of a wire-free audio transmission, the external
Bluetooth speaker option is the way to go. But if you value high fidelity sound
over wireless convenience, a wired connection to a dedicated stereo
amplifier/receiver offers the best sound reproduction to multiple speaker outputs.
If you are fortunate enough to have already prewired the rooms in your home for
stereo sound, the wired computer-to-stereo approach is the obvious choice.

Next we’ll configure the Mac to listen for voice commands and respond with a
high-quality voice response. Then we will write an AppleScript script that will
leverage OS X’s built-in speech recognition server to listen for specific
commands and act on them accordingly.

10.3 Giving Lion a Voice

Before we can talk to a Mac, we must first enable its speech recognition server.
Note that the speech recognition server had been broken on the OS X 10.5 and
10.6 releases and was finally fixed in the 10.7 Lion release. This once again
makes the Mac a viable speech recognition platform.

In order to configure the Mac to use its speech recognition capabilities, click on
the Speech icon in the System Preferences panel, as shown in Figure 46,
Accessing OS X speech settings.

Speech Recognition

Figure 46. Accessing OS X speech settings

Select the Speech Recognition tab and turn on the Speakable Items, as shown in
Figure 47, Turn on speakable items.

‘800 Speech

| 4 > || Show All (Q])

eI Text to Speech |

Speakable Items: (=) On () Off

O Commands |

Microphone: | iMic USE audio system = Calibrate... |

Listening Key: Esc Change Key... |

Listening Method: () Listen only while key is pressed
[_!Listen continuously with keyword

Keyword is: | Required before each command

Keyword: Computer

Upon Recognition: | | Speak command acknowledgement
Play this sound: | Whit %

(=]

Figure 47. Turn on speakable items.

Read the tips dialog box that is displayed the first time you enable this option
and take heed of the recommendations. Speech recognition algorithms are not
yet powerful enough to effortlessly understand a variety of dialects, accents, and
volume levels, but the technology is getting better all the time.

I find I have to be especially loud and clear when speaking to the Mac, making
an effort to slowly enunciate my commands with almost no background noise.
You may also need to play around with microphone gain and placement from
your mouth as well as acclimate to the cadence for the speech recognizer to work
with the vocabulary we’ll be defining in our script. Note that the Mac sets the
Microphone setting to use the Internal Microphone by default. We will revisit

this setting later when we change this to use the iMic adapter, but it’s okay to
leave the setting as it is for now.

When the Speakable Items option is activated, you will see a round microphone
graphic appear on your computer’s screen. This is the speech recognizer
window. You activate the recognizer by holding down the Escape key on the
keyboard. We will remove this keyboard requirement once we have our talking
home script running and our wireless microphone set up, but for now we’ll leave
it be so that we can more easily debug our script.

Before closing the Speech preference panel, we have one more option to set.
Click on the Text to Speech tab (see Figure 48, Text to Speech settings) and
select a System Voice from the drop-down list.

Speech Recognition

System Voice: | Alex

Speaking Rate: { _} Play

Show MNormal Fast

Announce when alerts are displayed Set Alert Options
Announce when an application requires your attention

Speak selected text when the key is pressed

To have clock announce the time: Open Date & Time Preferences...

To change VoiceOver settings: Open Universal Access Preferences...

Figure 48. Text to Speech settings

You can preview voices by clicking the Play button. The default voice is Alex.

It’s pretty good, but I prefer the American female voice Samantha. Since the
voice files are quite large, Apple doesn’t ship all of the selections with Lion.
Instead, you have to obtain them by selecting the Customize... System Voice
menu option. Doing so will display the dialog box shown in Figure 49, Lion
voice selections, which lists the voices freely available for download from
Apple.

Select voices:

English (United States) - Female
Agnes
Jill
v Kathy
Princess
v/ Samantha
v Vicki
v Victoria
English (United States) - Male
v Alex
v Bruce
v Fred
Junior
Ralph

This voice will be automatically downloaded

Play Cancel OK

Figure 49. Lion voice selections

There are plenty of voices to choose from, and you can preview each one before
downloading them by clicking the Play button. Once you select a voice that you
like, it may take a while to download and configure the selected voice files on
your computer, depending on your Internet connection and Mac CPU speed. As
an example, the Samantha voice file is over 450 megabytes in size.

Once downloaded and installed, you can further tweak the voice playback by
moving the Speaking Rate slider for faster or slower playback. I suggest keeping
it on the normal default for now and modifying it if necessary once you have the

whole wireless mic rig and speaker system working. Speaking of which, our next
task is to get the wireless mic hooked up and calibrated for speech recognition.

10.4 Wireless Mic Calibration

If you’re using a MacBook Pro or iMac computer, you could use the computer’s
internal microphone. It works okay if you are sitting directly in front of the
laptop, but it falters the farther you are from the screen. We need the mobility of
being able to converse with our home while walking around, watching TV,
making breakfast in the kitchen, or cleaning the living room. This will be
accomplished by using a wireless microphone.

For a wireless microphone to reliably work with the Mac’s speech recognizer, it
needs to be a decent quality wireless mic with clear audio signal transmission. A
mic that delivers crackling, hissing audio won’t work too well because the
speech recognizer will struggle to distinguish between the signal and the noise.
If this is a project you’re planning on fruitfully using for a long time, invest in a
quality wireless microphone, like those used by professional singers. These can
cost over two hundred dollars or more, depending on the features and broadcast
range, but they make a big difference in consistent delivery of clear audio. For
those interested in testing the waters before committing that kind of money in
audio hardware, the Radio Shack Wireless Lapel Microphone System is a more
economical compromise.

Plug the Griffin iMic adapter into one of the Mac computer’s available USB
ports, then plug the output of the wireless base station into the iMic’s miniplug
inputs. Make sure that the mic input is selected on the iMic, turn on the wireless
mic and power up the base station. Select the iMic USB audio system in the
Speech Recognition System Preferences pane and click the Calibrate... button.
This will bring up the microphone calibration window (Figure 50, Microphone
calibration). Speak into the microphone while moving the slider left or right to
keep the audio level in the green bar area.

Microphone Calibration

Calibrating improves the recognition of spoken commands. First, adjust
the slider until the meter stays in the middle of the green area as you
speak. Next, speak each of the phrases listed. A command blinks when
it is recognized. Repeat these two steps increasing or decreasing the
slider level until the listed phrases are recognized.

What Time Is It?

Quit this application
opens focement | R [
Show me what to say

F T .

Make this page speakable \ ./

I | [T | I 1
Move page down - High

Hide this application
Switch to Finder

Cancel | | Done |

Figure 50. Microphone calibration

Try moving around the room wearing the active wireless mic and verify that the
calibration bars still stay within the green while speaking.

We have one more task to complete before we can start coding. Let’s hook up
the speakers for audio output.

10.5 Programming a Talking Lion

Writing good speech synthesis and recognition software is hard. That’s why
we’re going to take advantage of all the hard work Apple speech software
engineers have poured into OS X. The engine can be accessed a variety of ways,
via the preferred method of Objective-C to Perl, Python, Ruby, and other
scripting language hooks. But the easiest way I have found to tinker and quickly
modify and test on the fly is via AppleScript.

I’11 be the first to admit that I am not a big fan of AppleScript. Its attempt to turn
script writing into a natural English sentence structure works only on a
superficial level. It breaks down pretty quickly for any intermediate developer
fluent in more elegant scripting languages like Ruby or Python. Even simple
tasks like string manipulation turn out to be a real pain in AppleScript. That said,
AppleScript trumps these other languages when it comes to effortless automation
integration with other AppleScript-aware OS X applications. Bundled programs
like iTunes, Mail, Safari, and Finder are fully scriptable, as are a number of
third-party OS X programs like Skype, Microsoft Office, and the like. In the case
of this project, Apple’s speech recognition server is also highly scriptable, and
that’s what we’re going to call upon in this project to make the magic work.

While AppleScript can be written using any text editor, it should come as no
surprise that it’s best hosted within the AppleScript Editor application. This can
be found in the Applications/Utilities folder. Launching the AppleScript editor
for the first time will open a blank, two-pane coding window. The top half of the
window is used to enter code, while the bottom consists of three tabs for
monitoring events, replies, and results of the executing script. The editor aids in
writing script by color coding AppleScript syntax, but it doesn’t offer IDE-
friendlier features like code completion or on-the-fly compiling. Fortunately,
scripts are typically short, so these omissions are not crippling.

AppleScript has its own vocabulary, keywords, and idioms. Learning
AppleScript isn’t difficult, but it can get maddening at times when you have to
massage the syntax just right to make the script do what you intended. For

example, parsing a string for an email address is easy in most scripting
languages. Not so in AppleScript. Partly due to its historical ties and partly due
to the way AppleScript expects you to work, it’s complicated. So with regard to
the code we will write for this project, you will just have to trust me and try to
follow along. If you find AppleScript to your liking or want to see what else it
can do to further extend the code for this project, review Apple’s online
documentation for more information.[108]

Before writing the script, let’s think about what we want it to do. First, we want
it to respond to a select group of spoken words or phrases and act on those
commands accordingly. What commands should we elicit? For starters, how
about having the script hit the URLs we exposed in some of our networked
projects, like the Web-Enabled Light Switch or the Android Door Lock? While
we’re at it, let’s make use of some of the bundled OS X applications like Mail
and iTunes to check and read our unread email and play music we want to hear.
Let’s also ask our house what time it is.

We need to initialize the SpeechRecognitionServer application and populate the set of
words or phrases that we want it to listen to. Using a series of if/then statements,
we can react to those recognized commands accordingly. For example, if we ask
the computer to play music, we will call upon the iTunes application to take an
inventory of music tracks in its library, sort these by artist and album, populate
these as more words/phrases to interpret, and have the text-to-speech engine ask
us which artist and album we want to listen to. Similarly, we can have our unread
email read to us via a check mail command. Doing so will launch the Mail
application, poll your preconfigured Mail accounts for new mail, check the
inbox for unread messages, and perform a text-to-speech reading of unread
sender names and message titles.

Now let’s take a closer look at the details of the script’s execution. Here’s the full
script in its entirety. Most of the syntax should be easy to follow, even if you are
not familiar with AppleScript.

with timeout of 2629743 seconds
set exitApp to "no"

http://media.pragprog.com/titles/mrhome/code/GivingYourHomeAVoice/osx-voice-automation.scpt

repeat while exitApp is "no"
tell application "SpeechRecognitionServer"

activate
try
set voiceResponse to listen for {"light on", "light off", -
"unlock door", "play music", "pause music", -
"unpause music", "stop music", "next track", -
"raise volume", "lower volume", -
"previous track", "check email", "time", "make a call", -

"hang up", "quit app"} giving up after 2629743
on error -- time out
return
end try
end tell

if voiceResponse is "light on" then
-- open URL to turn on Light Switch
open location "http://192.168.1.100:3344/command/on"
say "The light is now on."

else if voiceResponse is "light off" then
-- open URL to turn off Light Switch
open location "http://192.168.1.100:3344/command/off"
say "The light is now off."

else if voiceResponse is "unlock door" then
-- open URL to unlock Android Door Lock
open location "http://192.168.1.230:8000"
say "Unlocking the door."

else if voiceResponse is "play music" then
tell application "iTunes"
set musiclList to {"Cancel"} as list
set myList to (get artist of every track -
of playlist 1) as list
repeat with myItem in myList
if musiclist does not contain myItem then
set musicList to musiclList & myItem
end if
end repeat
end tell

say "Which artist would you like to listen to?"
tell application "SpeechRecognitionServer"

set theArtistlListing to -
(listen for musiclList with prompt musiclList)
end tell
if theArtistlListing is not "Cancel" then
say "Which of " & theArtistListing & -
"'s albums would you like to listen to?"
tell application "iTunes"
tell source "Library"
tell library playlist 1
set uniqueAlbumList to {}
set albumList to album of tracks -
where artist is equal to theArtistListing

repeat until albumList = {}
if uniqueAlbumList does not contain -
(first item of albumlList) then
copy (first item of albumList) to end of =
uniqueAlbumList
end if
set albumList to rest of albumList
end repeat

set theUniqueAlbumList to {"Cancel"} & uniqueAlbumList
tell application "SpeechRecognitionServer"
set theAlbum to (listen for the theUniqueAlbumList -
with prompt theUniqueAlbumList)
end tell
end tell
if theAlbum is not "Cancel" then
if not ((name of playlists) contains "Current Album") then
set theAlbumPlaylist to -
make new playlist with properties {name:"Current Album"}
else
set theAlbumPlaylist to playlist "Current Album"
delete every track of theAlbumPlaylist
end if
tell library playlist 1 to duplicate -
(every track whose album is theAlbum) to theAlbumPlaylist
play theAlbumPlaylist
else
say "Canceling music selection”
end if
end tell
end tell
else

say "Canceling music selection"
end if

else if voiceResponse is "pause music" or -
voiceResponse is "unpause music" then
tell application "iTunes"
playpause
end tell

else if voiceResponse is "stop music" then
tell application "iTunes"
stop
end tell

else if voiceResponse is "next track" then
tell application "iTunes"
next track
end tell

else if voiceResponse is "previous track" then
tell application "iTunes"
previous track
end tell

-- Raise and lower volume routines courtesy of HexMonkey's post:
-- http://forums.macrumors.com/showthread.php?t=144749
else if voiceResponse is "raise volume" then
set currentVolume to output volume of (get volume settings)
set scaledVolume to round (currentVolume (100 16))
set scaledVolume to scaledVolume + 1
if (scaledVolume > 16) then
set scaledVolume to 16
end if
set newVolume to round (scaledVolume / 16 * 100)
set volume output volume newVolume
else if voiceResponse is "lower volume" then
set currentVolume to output volume of (get volume settings)
set scaledVolume to round (currentVolume (100 16))
set scaledVolume to scaledVolume - 1
if (scaledVolume < 0) then
set scaledVolume to 0O
end if
set newVolume to round (scaledVolume / 16 * 100)
set volume output volume newVolume

else if voiceResponse is "check email" then
tell application "Mail"
activate
check for new mail
set unreadEmailCount to unread count in inbox
if unreadEmailCount is equal to 0 then
say "You have no unread messages in your Inbox."
else if unreadEmailCount is equal to 1 then
say "You have 1 unread message in your Inbox."
else
say "You have " & unreadEmailCount & -
" unread messages in your Inbox."
end if
if unreadEmailCount is greater than 0 then
say "Would you like me to read your unread email to you?"
tell application "SpeechRecognitionServer"
activate
set voiceResponse to listen for {"yes", "no"} -
giving up after 1 * minutes
end tell
if voiceResponse is "yes" then
set allMessages to every message in inbox
repeat with aMessage in allMessages
if read status of aMessage is false then
set theSender to sender of aMessage
set {savedDelimiters, AppleScript's text item delimiters} -
to {AppleScript's text item delimiters, "<"}
set senderName to first text item of theSender
set AppleScript's text item delimiters -
to savedDelimiters
say "From " & senderName
say "Subject: " & subject of aMessage
delay 1
end if
end repeat
end if
end if
end tell

else if voiceResponse is "time" then
set current_time to (time string of (current date))
set {savedDelimiters, AppleScript's text item delimiters} to -
{AppleScript's text item delimiters, ":"}
set hours to first text item of current_time
set minutes to the second text item of current_time

set AMPM to third text item of current_time
set AMPM to text 3 thru 5 of AMPM
set AppleScript's text item delimiters to savedDelimiters
say "The time is " & hours & " " & minutes & AMPM
--else if voiceResponse is "make a call" then
-- tell application "Skype"
-- -- A Skype API Security dialog will pop up first
-- -- time accessing Skype with this script.
-- -- Select "Allow this application to use Skype" for -
-- -- uninterrupted Skype API access.
-- activate
-- -- replace echo123 Skype Call Testing Service ID with -
-- -- phone number or your contact's Skype ID
-- send command "CALL echo123" script name -
-- "Place Skype Call"
-- end tell
-- else if voiceResponse is "hang up" then
-- tell application "Skype"
-- quit
-- end tell
else if voiceResponse is "quit app" then
set exitApp to "yes"
say "Listening deactivated. Exiting application.”
delay 1
do shell script "killall SpeechRecognitionServer"
end if
end repeat
end timeout

The first thing we should do to keep the script running continuously is wrap
the script in two loops. The first is a with timeout... end with loop to prevent the

script from timing out. The timeout duration must be set in seconds. In this
case, we’re going to run the script for one month (there are roughly 2.6
million seconds in an average month).

The second loop is a while loop that repeats until the exitApp variable is set to
yes via the “Quit app” voiceResponse, as shown toward the end of the code
listing.

Next, initialize the Speech Recognizer Server and pass it an array of the key
words and phrases via the listen for method. We will keep the recognizer alive

for a month so it can await incoming commands without having to restart the
script when the listening duration times out. You can extend this month-long
duration by changing the giving up value.

If the incoming phrase is interpreted as lights on, we will open the default
browser and direct it to the on URL of our web-enabled light switch. “Lights
off” will request the off URL from that project. We can also perform the
same open location URL call for the Android door lock project too.

Besides triggering URL calls via voice, we can also interact with
AppleScript-able OS X applications like iTunes and Mail. In this code
snippet, we do the following:

1. Open iTunes.
2. Create an empty list array.

3. Populate that array with every song track in our local iTunes library,
eliminating duplicate titles along the way.

4. Extract the artist names from the array of tracks.

5. As long as there is at least one artist in the array, pass the array of artist
names to the speech recognition server via its listen for method.

6. Ask the user to pick an artist to listen to. If the user responds with the
name of an artist in the library, populate the speech recognizer with the
name(s) of that artist’s album(s). Users can also exit the play music
routine at this point by saying the word “Cancel.”

7. If an artist has more than one album in the library, use the same type of
procedure as the artist selection process to select the desired artist’s
album. Otherwise, start playback of the album immediately.

® The pause/unpause and stop music commands, along with the next and
previous track commands, call iTunes’s similarly named methods.

® The raise and lower volume commands capture the Mac’s current output
volume and raises or lowers it equivalent to a single press of the up and
down volume keys on the Mac’s keyboard. These commands are especially
helpful when having to raise or lower music playback volume hands-free.

This portion of the script expects that you have already configured your
desired email accounts to work with OS X’s built-in Mail application. In the
Mail snippet, we do this:

1.

Open Mail.
Poll all configured mail servers for new, unread email messages.

Count the number of unread mail messages in the unified inbox and
speak that amount.

If there are any unread messages, ask users if they would like to have
their unread messages read to them.

If the user answer is yes, create an array of the unread messages and
read the name and the subject line of the email. Otherwise, exit the
routine.

® This routine extracts the current time from AppleScript’s current date routine.

From there, we do this:

1.

2.

Assign the current time to the string current_time.

Use AppleScript’s savedDelimiters function to split the current_time string
via the : delimiter. This breaks the string apart into its constituent hour
and minute values. The remainder of the string contains the a.m. or p.m.
designation.

Assign these time values to their appropriate variables (hours, minutes,
AMPM) and speak them accordingly.

Uncomment these lines (remove the double-dash [--] characters used to
indicate a comment in AppleScript) if you have the Mac Skype client
installed and you want to place a hands-free call. Configure the account
name of your choice in the echo123 Skype call testing service account.

This command exits the script and ensures that the speech recognition server
process is indeed killed by issuing a killall SpeechRecognitionServer command

from the shell.

Once you have entered the script in the AppleScript editor, save it and click the
Compile button on the editor’s toolbar. If the script contains any typos or errors,
it will fail to compile. Clean up whatever problems occur and make sure you
attain a clean compile. Also make sure that your calibrated wireless headset is
turned on and the input audio levels are properly set. Turn up the volume on
your external speakers loud enough to hear the responses and music playback.
Then click the Run button and get ready to talk.

10.6 Conversing with Your Home

The culminating moment of glory has arrived. Speak the command “Time,” and
listen for your computer to respond with the current time. Ask it to “play music,”
and your computer should respond with “Which artist would you like to listen
to?” Respond in kind with an artist in the computer’s iTunes library and select
the album from which to start playing. Say “Stop music” when you’re done
listening to the music.

Query for unread email in your inbox by asking your computer to “check mail.”
Check the computer screen to verify that the computer responds with the correct
count and reads the correct email sender and subject lines.

If you have your Android door lock or web-enabled light switch running, say
“Unlock door” or “Light on” to watch your door unlock or light turn on
accordingly. You now have your own voice-activated home. Pretty cool!

Try issuing commands from different locations. Move around the room, then try
from other rooms. See how far your wireless microphone’s signal will reach
before it starts to cut out and your commands are no longer being acknowledged.
Keep these boundaries in mind when interacting with your computer.

To give the script more permanence, convert it to an executable. Place its icon in
the OS X desktop dock and control-click its icon to select Open at Login from
the Options section of the pop-up menu. This will automatically launch the script
each time you log into your Mac’s desktop, ready to listen to your predetermined
voice commands.

Continue to tweak the script and add any new phrases and functionality that best
suit your environment. Network-enable the Curtain Automation project and
instruct your home to “open drapes” or add a weather option that pulls down the
weather forecast from the National Oceanic and Atmospheric Administration’s
weather.gov website and reads it aloud. Consider adding more features as
suggested in the Next Steps section.

10.7 Next Steps

Kudos to you for completing the last project in the book. As you have seen,
enabling voice recognition is a remarkably trivial matter and while the
technology isn’t perfect, it’s still pretty wild that we have the ability to control
our home in ways that were considered science fiction twenty years ago.

Take this higher-level automation skill further by pursuing the following
enhancements:

¢ Expand the spoken email routine to include saying the timestamp and
message body. Add the ability to delete a message or reply to an email with
prepared templates (ex: “Reply yes”).

e Duplicate the script’s iTunes artist/album lookup array functionality for the
Skype client so that you can place hands-free calling to anyone on your
Skype contact list. After saying “Make a call,” the script will populate a
listen for array with the contact names in your active Skype account. Like the
artist name response, reply with the name of the contact you want to call
and the script will automate Skype to do so.

e Add Text to Speech extensions to the Tweeting Bird Feeder and Package
Delivery Detector Python scripts that speak status updates when events like
bird landings or package deliveries are detected. This can be done via an
Open Script Architecture (OSA) shell command.[109]

¢ Bring speech recognition to other computing platforms besides Apple OS X
by converting the script to an Android application by calling upon
Android’s RecognizerIntent intent or Microsoft’s Speech API for the Windows

platform.[110]

Footnotes

[105] http://www.supertooth.net/AU/produitmusique.htm

http://www.supertooth.net/AU/produitmusique.htm

[106] http://www.radioshack.com/product/index.jsp?productld=2131022

[107] http://store.griffintechnology.com/imic

[108] http://developer.apple.com/library/mac/#documentation/AppleScript/Conce

[109] http://developer.apple.com/library/mac/#documentation/Darwin/Reference,

http://developer.android.com/resources/articles/speech-input.html or http://
[110] ys/library/ee125663%28VS.85%29.aspx, respectively.

Copyright © 2012, The Pragmatic Bookshelf.

http://www.radioshack.com/product/index.jsp?productId=2131022
http://store.griffintechnology.com/imic
http://developer.apple.com/library/mac/#documentation/AppleScript/Conceptual/AppleScriptLangGuide/introduction/ASLR_intro.html
http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man1/osascript.1.html
http://developer.android.com/resources/articles/speech-input.html
http://msdn.microsoft.com/en-us/library/ee125663%28VS.85%29.aspx

Part 3
Predictions

Future Designs

The majority of this book has focused on real home automation projects that you
can build inexpensively today. This chapter takes a look at the exciting, rapid
evolution of microcontrollers, smartphones, and computers and then forecasts
what’s on the horizon for these technologies.

We will take a look at the near-term prospects of Arduinos, Androids, and
computer operating systems and then extrapolate these developments out
roughly a decade to see how these products will help form the foundation of
high-tech residential living in the year 2025. Looking back at how sophisticated
mobile technology has become over the last ten years, the ideas in this future
setting may not be as farfetched as they sound. In fact, most of the proposed
scenarios could be implemented today, with the projects you learned about in
this book helping to point the way. But first, let’s take a look at what’s coming
up in the next year or so.

11.1 Living in the Near

The open hardware movement is rapidly gaining momentum, and more
businesses and services are expanding or being created as a result. The
established technologies like Arduino and Android are not standing still either.
Both of these platforms had major version upgrades just as this book was
finishing its production.

This section talks about what changes are in store with these near-term
technology innovations and how these new releases will impact anyone choosing
to use these as the technologies of choice when constructing the projects in this
book.

Arduino 1.0

Just as the final pages in this book were written, the Arduino team announced
the impending release of Arduino version 1.0. A number of substantial changes
have been made in this version that will certainly create legacy code nightmares.
This was a bold move by the Arduino team given the considerable amount of
user-generated libraries, code samples, documentation, books, and videos made
using earlier Arduino releases. As a consequence, this book is no different. Once
Arduino 1.0 is widely adopted, the project and library dependencies will almost
certainly need to be rewritten to support the changes. Most notable of these
changes include the following:

e Sketch file name extensions have been changed from .pde to .ino. This was

done to avoid confusion with Processing sketches that also use the same
.pde extension.

e The Arduino Ethernet library will natively support DNS and DHCP. This
will make IP address assignments vastly easier.

e The String class has been optimized so that it requires fewer onboard
resources and can do more with less.

e The Serial class contains more parsing functions to search for data and to
quickly read multiple bytes into a buffer. This may also create timing issues
when using legacy code since such asynchronous operations were not
available or accounted for in most sketches preceding the Arduino 1.0
release.

e Other bundled libraries like those for using the SD card reader have also
been upgraded to make it easier to write sophisticated sketches without
having to worry so much about the underlying code such sketches rely
upon.

e Cosmetic changes have been made to the IDE. New icons, color schemes,
and indicators like compilation progress bars have been added to modernize
the IDE and make it easier to locate and interact with the user interface
elements.

e Several other key library class and function names (such as the Wired
library) have changed along with their return types and implementations.
Library authors will be busy in the months ahead as they port their
contributions to support these lower-level modifications.

For more details about these changes, read the entry on this topic posted on the
Arduino blog.[111] Fortunately, the Arduino IDE is self-contained and portable
enough to install several different versions on your computer. You will be able to
continue to use the previous releases of the IDE when sketch dependencies have
not yet been upgraded to support the latest improvements. As the new version
becomes more widely adopted over the next year or so, more of the popular user
libraries will be converted and supported. As such, future editions of this book
intend to provide code compatible with the new and the old IDE releases.

Android@Home

At the 2011 Google 10 conference, the Android Open Accessory API and
Development Kit (ADK) was officially unveiled. The intent of this initiative was
to provide Android API-level access to low-cost microcontrollers, sensors, and
actuators. Conference attendees were given custom versions of the Arduino

Mega board populated with basic sensors that could be polled from an Android
device like the Google Nexus phone.[112] Several configuration scenarios were
posited at the conference using this technology combination, one of which was
dubbed Android@Home. Examples that controlled wireless lighting,
entertainment systems, and exercise equipment were demonstrated, and more
third-party solutions are expected to be announced at Google 10 2012.

The ADK is really what drives Google@Home, and at its heart it is a hardware
specification that attempts to standardize communication across devices. The
Android OS can then react to these messages accordingly. The expectation is that
as hardware becomes more commoditized, the Android OS will be embedded
into more devices beyond just phones. Google hopes that this will revolutionize
the home automation market by having enough electronic appliance
manufacturers adopt the specification and allow these devices to talk to one
another.

Unfortunately, having seen this scenario play out with other home automation
standardization attempts, I don’t think there has been enough momentum behind
the Google@Home initiative outside of Google that shows much interest...yet.
Many are taking a wait-and-see approach before investing much attention. But
even if Android@Home doesn’t have white-hot adoption, its impact on the home
automation space will no doubt spur Google’s competitors, namely Apple and
Microsoft, to take a closer look at this market opportunity. The most likely initial
point of entry for these companies will be the television.

The Apple Home Button

With the introduction of Apple’s Siri in the iPhone 4S, Apple has constructed a
meta-interface on top of information searching, one that does not rely entirely on
a web browser to view query results. For search providers like Google and
Microsoft, this is a game changer, since those company’s revenue models are
derived by interleaving relevant advertising with search results. In certain
scenarios, Siri’s vocal output filters these text-based results to form a
conversation with the user rather than a database dump, obviating the need for a
slurry of ads to be displayed. While it’s technically possible that Apple may

someday incorporate advertising in Siri’s conversation, the near-term Siri
experience is expected to be ad free. If you had the choice between typing in a
query and receiving a blob of links and ads in return versus asking your TV for
information and having it respond with a clear, direct answer, which technology
would you use?

Apple, like Google and Microsoft, also designed a computer that connects to a
television and allows streaming music and video content to be played back on
the TV. Hopeful rumors abound that Apple will release a next generation version
of their Apple TV device that could incorporate Siri technology for voice remote
control. It isn’t hard to imagine asking your TV to display the local weather
forecast, play album tracks by your favorite artists, perform speech-to-text
dictation email responses and, yes, even reach out to other devices in the home
(predominantly iPhones and iPads) that synchronize via iCloud and participate in
the conversation. Google and Microsoft won’t be sitting still either, and it’s
possible that their voice recognition and huge data sets of aggregated
information will beat Apple to the spoken command automation party.

It should also come as no surprise if engineers at Apple have been looking for
ways to more tightly couple their platform into the home. With Google’s
Android@Home intentions and Microsoft’s Kinect experiments, Apple’s home
consumer cards have yet to be shown. But when they are, Apple’s approach will
undoubtedly receive significant attention and developer support.

11.2 The Long View

While all of this automation designed around making our home lives easier is
truly awesome, the one key dependency to making it all work is electricity. But
you can imagine the demands placed on our planet’s resources if everyone had
the luxury of fully automated homes. Hopefully the next generation of
entrepreneurs will do for energy collection and distribution what my generation
did for computers and global communications. Smart grids, sustainable energy
sources, and respect for the environment will be just as important as the
inexpensive sensors, standard protocols, and ubiquitous secure wireless
communication that automation products of the future will need to support.

Assuming the energy problem is accounted for, the likelihood of low-power
sensors and hardware messaging systems will mushroom. How many computers,
monitors, clocks, radios, phones, tablets, and entertainment consoles do you
have plugged into your home’s power outlets? Forty years ago, besides lighting
and refrigeration, there might have been one or two TVs, an LP turntable, a few
radios, and maybe an electric clock. Forty years from now, it’s possible that there
will be half a dozen electronic devices networked in every room and in constant
chatter with their peers. Centralized services will monitor messages for events
and reacting accordingly. So what will this look like?

The Home Is the Computer

Imagine taking the projects in this book and expanding them in various ways for
every room in your home. Automation is everywhere and the air is busy with
messages being sent to your server for processing. Perhaps this server is a virtual
private server in the cloud, or maybe the message bus is being managed by a
third-party provider. Your home will be able to immediately inform you of any
alerts and will also be able to sense your presence and react accordingly. Image
and voice recognition systems will know who you are and orient the home’s
services to your preferences. You will live in a sensor-filled environment and it
will be just as natural and effortless as tweeting from your phone is today. The
data collected will be analyzed and refined to fit your lifestyle. Your home will

be capable of predicting your lifestyle activities based on external factors like the
season and time of day, local weather, package deliveries, type of visitors,
duration of presence, preferred mode and style of digital entertainment, and the
frequency and filtering of alerts.

The Embedded Mattress

Electronic components are getting less expensive by the day. Considering how
much computing power there is in a thirty-dollar Arduino board compared to the
cost of the same level of computing ten years ago, it’s not too difficult to
imagine how even more computing capacity will be available for even less
expense in the future. Combine these microcontrollers with inexpensive
embedded sensors, and the home will be abuzz with information interaction.
When you leave for the day, your home will power down to sleep mode,
ensuring that gas and electricity consumption are kept to an operating minimum.
When you nod off to sleep, pressure sensors in your bed will know if you had a
restful or restless night and accommodate the alarm in the morning. Each door
could be wired so your house will know your traversal patterns and preemptively
turn on lights and appliances accordingly.

For example, the house will know you wake up for work every morning at six
o’clock, take a shower, and head to the kitchen for a cup of coffee thirty minutes
later. After triggering your alarm clock, the shower will turn on and the water
will be warm just as you enter. While you’re getting dressed, coffee will be
freshly brewing and ready by the time you reach the kitchen. The house will also
know that you sleep in until eight o’clock on Saturdays and don’t follow the
same routine, so it will toggle to manual mode for the daily waking ritual. Not
surprisingly, this scenario can be programmed and implemented today with the
tools and technologies we used in the book’s projects. But when the electronics
get cheap enough, the cloud gets robust enough, and the interfaces are
standardized enough, a greater number of people will come to expect this type of
scenario.

11.3 The Home of the Future

Like any passionate technologist, I enjoy imagining futuristic visions of
plausible technology scenarios. Yet the pragmatic developer in me knows such
visions don’t happen overnight. They require incremental steps in a number of
related areas. But at some point, all those incremental services, discoveries, and
technologies converge and create inflection points that forever alter the course of
history.

I have been fortunate to participate in three major technology revolutions in my
lifetime. The first was the introduction and rapid evolution of the personal
computer in the 1980s. The second was the supernova expansion of the Internet
in the 1990s, and the third was the mobile device revolution in the first decade of
the twenty-first century.

Technologies are converging. Cloud computing, palm-sized Internet-connected
supercomputers, inexpensive network-aware embedded sensors, autonomous
controls, cheap storage, and faster compute cycles will lead us to another
amazing era of information processing. With all these technology forces and
developments meshing together, here is my prediction of a typical domestic day
for a technically savvy homeowner (Figure 51, A Smarter Home, circa 2025).

Figure 51. A Smarter Home, circa 2025

After coming home from a long day at work, Mel’s phone activates the keyless
doorway lock that automatically logs the event and video capture to her secure
cloud bank. Based on GPS coordinates, Mel’s phone had already called ahead
when she was twenty minutes away to tell the HVAC system to turn on the air
conditioning. By the time of her arrival, the home was as cool as when she left in
the morning.

A parcel is waiting for her on the steps; it’s a box of paper towels that was
automatically reordered when the towel dispenser detected it was running low.
With the delivery confirmation message, the dispenser’s counter was
automatically reset and won’t need to reorder again for a while.

She’s carrying a bag of groceries that her refrigerator suggested that she bring
home. The sensors in the fridge detected that the tomatoes had only another day
before they would start to turn, so Mel decided to pick up some additional
ingredients for making spaghetti sauce.

As she prepares the meal by filling up a pot of water to boil for the spaghetti, the
faucet sensors ensure that the purity of the water is contaminant-free. If an
anomaly is detected, a message is sent to the city’s water reclamation department
automatically reporting the issue.

After dinner, Mel decides to exercise with a ride on her stationary biking
simulator. She usually meets a friend on the prairie road course around this time
of day, so she dons her motion-tracking 3D headset, queues up her favorite
playlist and starts peddling. The headset has a heart rate, blood pressure, and
perspiration monitor built into the strap, and these values are translucently
overlaid on top of the pastoral scene of rolling hills of swaying wheat. After a
few minutes, her friend’s avatar rides close by and pings her, asking if Mel is
available for conversation. Mel acknowledges and the two keep each other
company as they log half an hour on their bikes. At the end of the ride, each are
credited with 200 energy points as a result of their peddling power feeding
electricity back into the grid.

With twilight approaching, photosensors lining the window panes prepare the
home’s lighting for the evening by drawing the curtains and activating motion
detectors in the rooms. Gone are the days of flipping on and off light switches,
unintentionally leaving lights on throughout the home even when no one is in the
room. There is an override option when guests are visiting, but most of the time
the motion detectors do their job well by turning on and off the lights based on
presence. This effective lighting strategy has contributed to even more monthly
energy credits as a result.

As she begins to settle in for the evening, Mel asks her television to list new
videos that her friends have suggested. Voice control has become the norm with
content consumption devices and has steadily improved with filtering algorithms
and speaker identification. While the videos play back sequentially, overlays of
her online status, message queues, weather forecast, and upcoming schedules
can be called upon just by asking the television for that information. The weather
dictates what her outfit will be the next day. A warm front is moving in, so Mel’s
closet rack automatically queues up via RFID sensors embedded in the clothing
hangers a section of appropriate outfits to choose from. It’s going to be a bright,
sunny day.

I hope you enjoyed that projection of the future. For those who prefer to invent
the future instead of waiting around for it to arrive, the technologies to build
such a scenario exist today. With the right mix of cost-effective technology, easy
implementation, and effective sales, marketing, and timing, someone is going to
bring elements of this future scenario to life and forever change the way people
interact with their homes. That person could be you!

Footnotes

[111] http://arduino.cc/blog/2011/10/04/arduino-1-0/

[112] http://www.adafruit.com/products/191

Copyright © 2012, The Pragmatic Bookshelf.

http://arduino.cc/blog/2011/10/04/arduino-1-0/
http://www.adafruit.com/products/191

More Project Ideas

Now that you have a solid footing on which to climb, you can take your home
automation design and construction experience to new heights by building your
own projects. This brief concluding chapter offers a quick survey of other ideas
to consider using equipment you have already worked with.

If you assembled all the projects in this book, you already have most of the
hardware required to build the ideas presented in this chapter. You can also take
the code from these projects and have these new project suggestions up and
running with just a few tweaks. Let’s take a look at some more ways you can
program your home.

12.1 Clutter Detector

Do you have a spouse, kids, or a partner who just can’t seem to keep an area free
of clutter and debris no matter how often you think it gets cleaned up? Somehow
that empty spot attracts newspapers, junk mail, empty boxes, crumpled clothing,
packing material, and whatever else happens to be pseudomagnetized to that
spot? If so, enlist the help of your newfound electronics experience by
constructing a detector using an infrared distance sensor.[113]

Point the sensor at the empty space and measure the “clean area” reading. As
clutter piles up, the distance detected by the sensor will be reduced. Have this
trigger an email to your clutter-collecting cohabitants that they need to remove
their clutter collection from the detection area. Be as aggressive as you want to
on email notification frequency. And when the clutter has been removed, you
can even send an email message from your home thanking the offender(s) for
cleaning up the mess.

12.2 Electricity Usage Monitor

Using the same concept behind Adafruit’s Tweet-A-Watt,[114] hook into a Kill-
A-Watt electricity flow detector to measure the energy usage of an electrical
appliance such as a refrigerator or television.

Some electrical utility companies offer their customers energy tracking by
month. Access this on the Web and calculate the percentage of total electricity
that monitored appliance consumes on a monthly basis. Then, based on your
electricity bill for that month, calculate the monthly, daily, and hourly cost
associated with operating that appliance. You may be surprised just how much
money you’re spending on watching a couple hours of TV or how much that
freezer that you bought on sale really ends up costing over its lifetime.

12.3 Electric Scarecrow

Have critter problems been plaguing your vegetable garden? Shoo those
problems away using a smarter approach. Go beyond the picturesque but
functionally pointless static scarecrow by bringing it to life with the help of a
motion detector and a couple of heavy-duty servos. When that pesky rabbit
comes by for its evening grazing on your plants, the scarecrow’s sensor will
bring it to life, moving its arms and legs in a convincing way to frighten the
rabbit away. Have your scarecrow email a photo of its animal detection activities
with the help of an Android camera phone seated inside the scarecrow’s head.

12.4 Entertainment System Remote

Extend the Rails server from the Chapter 7, WebEnabled Light Switch project to
transmit IR commands through a serial port connected to an Arduino that is
attached to an IR LED.[115] Build the Arduino-assisted IR transmitter using
Maik Schmidt’s instructions in Arduino: A Quick Start Guide [Sch11]. Place IR
LEDs in front of all your IR-controlled entertainment center devices, such as
televisions and audio receivers. Create a friendly user interface for your native
iOS or Android client, or combine the IR user interface with other project client
interfaces, such as the one we made for the Chapter 9, Android Door Lock.

12.5 Home Sleep Timer

Have any family members who fall asleep while watching TV? Forgot to power
down that power-hungry quad-core desktop computer in the study? Did someone
forget to turn off the lights in the basement? If so, write a script that turns off
lights, appliances, and computers at a time when everyone should be sleeping. If
the computer supports Wake-On-LAN (WOL), send it a shutdown packet from
your script. Turn off lights via X10 heyu commands. Turn off TVs and stereos via
the entertainment system remote. Turn off anything else plugged into a
PowerSwitch Tail. Pocket some money, reduce your carbon footprint, and save
the planet while you sleep.

12.6 Humidity Sensor-Driven Sprinkler System

Hook up a DHT22 temperature and humidity sensor to an Arduino attached to a
stepper motor that drives a water spigot attached to a garden hose connected to a
lawn sprinkler.[116] When the temperature is high and the humidity is low for a
prolonged duration, turn on the stepper motor crank valve on the water spigot.
Let the water run for ten minutes and then shut off the water valve. Calculate the
volume of water used based on the duration it was running. Do this by first
calibrating the number of seconds it takes to fill up a liter (or gallon, for the
metric system-challenged) at the valve setting established by the stepper motor
crank.

For example, if it takes thirty seconds to fill up a liter container, running the
sprinkler for ten minutes will consume 20 liters (2 liters per minute times 10
minutes) of water each time you run the sprinkler. Log this amount with the help
of an XBee/PC setup (from Chapter 5, Tweeting Bird Feeder) over the duration
of the month, and determine from your water bill the percentage of water used
on your lawn. Once this metric is calibrated, you can calculate lawn sprinkling
costs in real time and literally watch your money flow out of the spigot.

12.7 Networked Smoke Detectors

Smoke detectors save lives and can help minimize property damage, but what
happens when the alarm goes off when nobody is home? If you know what
you’re doing, you can hook directly into the onboard electronics of the smoke
detector to measure the voltage change when the alarm goes off, but doing so
will probably void your detector’s warranty. It could also put the lives of those
who depend on its life-saving functionality at risk if the device is improperly
modified. Instead of soldering directly onto the smoke detector’s electronics,
obtain an Electret microphone breakout board and use your Arduino and XBee
skills to hook up, calibrate, and monitor the microphone input for the audio
levels attained when the smoke detector’s alarm is sounding.[117] When an
alarm is detected, have your XBee message-receiving PC relay you the message
via an urgent email. You could even modify the Android server we used in
Chapter 9, Android Door Lock, to take a photo of the area being monitored by
the smoke detector and attach it to the outbound message.

You could even link this alert to perform further actions, such as auto-dialing
neighbors with a recorded message asking them to investigate the fire on your
behalf and call you (just in case you never received the email). And if you’re
really confident in your system’s sensing integrity, you could go so far as to
auto-call the fire department if you don’t deactivate the alarm within a
predetermined duration of time (though keep in mind that improper and/or
nonemergency alerts could end up costing you, since many jurisdictions have
penalties for false calls). Regardless of what enhancements you add, the fact
remains that your smoke detector can extend its alert distance worldwide thanks
to the Internet-enabled communication pathway you can devise for it.

12.8 Proximity Garage Door Opener

As you approach your garage with your GPS-enabled smartphone, the phone
triggers a request to open the garage door. This relays to Arduino-XBee
hardware attached to your garage door’s RF-transmitting garage door opener,
which in turn transmits the request to the automatic garage door receiver and
opens the door.

Sans the GPS feature, opening a garage door from a smartphone like the Android
or iOS device is a very popular DIY project, and a number of videos doing this
have been posted on YouTube. Since your garage is a fixed location, the GPS
values for latitude/longitude/elevation will remain static. By extending the Rails
server we wrote in Chapter 7, WebEnabled Light Switch, writing the smartphone
application that extends the toggle functionality of the garage door opening and
closing based on your location shouldn’t be too difficult.

12.9 Smart HVAC Controller

Manage your air conditioning and heating needs with smarter temperature
control in your home. You can dial your thermostat up or down based on a
specific time frame or operate it from a remote location. Ben Heckendorn, host
of The Ben Heck Show, posted an episode on home automation featuring this
project.[118] I like his approach because he didn’t mess with the hardwired
internals of the thermostat. It also uses parts that we already had from Chapter 8,
Curtain Automation, making it an easy project to assemble and implement.

12.10 Smart Mailbox

This is another popular DIY home automation project that has numerous write-
ups and video posts around the Web. Simply reuse the hardware we constructed
in Chapter 5, Tweeting Bird Feeder, and tweet or email when the light coming
from the open mailbox lid hits the photocell. You could also have the speech
playback-enabled Android device from Chapter 10, Giving Your Home a Voice,
audibly announce the delivery, as in “You’ve Got Mail!”

12.11 Smart Lighting

Go beyond the project presented in Chapter 7, WebEnabled Light Switch, to
incorporate a managed lighting system throughout the home. Incorporate motion
detectors to activate and deactivate lights in basements, bathrooms, and
bedrooms. Record when lights turn on and off, and correlate the monthly
operational costs associated with lighting your home based on your total
electricity bill.

12.12 Solar and Wind Power Monitors

For those fortunate enough to have portions of their electrical power
consumption supplied by residential solar and wind energy collectors, you can
use the Arduino/XBee/PC combination to measure both the energy generated by
these devices and the status of the battery’s charge being stored in the batteries
that capture and store the output of these reusable energy devices.

Send email alerts when the battery’s charge is below a certain threshold. Capture
the stats over time and map them to understand the month-to-month fluctuations
that can be used to predict energy output for years to come.

If you happen to build these or any other home automation projects that you’re
proud of, keep the projects alive by sharing them with other readers—post your
ideas, discoveries, and outcomes to the Programming Your Home book forum.

See you online!

Footnotes

[113] http://www.adafruit.com/products/164

[114] http://www.adafruit.com/products/143

[115] http://www.adafruit.com/products/387

[116] https://www.adafruit.com/products/385

[117] http://www.sparkfun.com/products/9964

[118] http://revision3.com/tbhs/homeauto

Copyright © 2012, The Pragmatic Bookshelf.

http://www.adafruit.com/products/164
http://www.adafruit.com/products/143
http://www.adafruit.com/products/387
https://www.adafruit.com/products/385
http://www.sparkfun.com/products/9964
http://revision3.com/tbhs/homeauto

Part 4
Appendices

Installing Arduino Libraries

One of the biggest advantages of the Arduino product line is that it is built on an
open hardware platform. This means that anyone is able to contribute to the
hardware and software libraries. These libraries can be easily incorporated into
Arduino sketches to extend the Arduino’s functionality and, in many cases, make
it easier to write the sketches yourself.

Several projects in this book benefitted from such community contributions.
Unfortunately, installing new Arduino libraries isn’t as automatic as running a
setup script. Library files, which are often distributed in a compressed .zip
format, need to be uncompressed and placed into the Arduino’s libraries folder.
The location of this folder varies depending on which operating system the
Arduino IDE is running on.

Al.1 Apple OSX

1.

4.

S.

Locate the Arduino icon, typically found in the main /Applications folder.

Hold down the Control key on the keyboard and click the Arduino icon,
usually located in the /Applications folder. This will pop up a context-
sensitive menu.

Select the Show Package Contents option from the pop-up menu. This will
open a folder containing the Arduino application resources.

Navigate to the Contents/Resources/Java/libraries folder.

Copy the new library files into this libraries folder.

If you prefer, you can also place library files in your home directory’s
Documents/Arduino/libraries folder.

Al.2 Linux

1. Locate where you uncompressed the Arduino application files.

2. Navigate to the libraries folder.

3. Copy the new library files into this libraries folder.

A1.3 Windows

1. Locate where you unzipped the Arduino application files.
2. Navigate to the libraries folder.
3. Copy the new library files into this libraries folder.

After you have copied the library files into their appropriate location, restart the
Arduino IDE so that the library can be referenced in your sketches.

For example, to install the CapSense library from the Chapter 5, Tweeting Bird

Feeder project on a computer running Apple OS X, unzip the CapSense.zip file.
Then place the unzipped capSense folder into the
ApplicationsArduino/Contents/Resources/Java/libraries folder. Restart the Arduino IDE.

Create a new Arduino sketch. Type the following sketch into the Arduino IDE
window:

#include <CapSense.h>;
void setup() {}
void loop() {}

Click the Verify button on the Arduino IDE toolbar. If the CapSense library was

copied to the correct location, this three-line sketch should compile without
errors.

Copyright © 2012, The Pragmatic Bookshelf.

[Burl0]

[CADHO09]

[Fal10]

[LAO03]

[RC11]

[Schi1]

[TFHO09]

Bibliography

Ed Burnette. Hello, Android: Introducing Google’s Mobile
Development Platform, Third Edition. The Pragmatic Bookshelf,
Raleigh, NC and Dallas, TX, 2010.

David Chelimsky, Dave Astels, Zach Dennis, Aslak Hellesgy, Bryan
Helmkamp, and Dan North. The RSpec Book. The Pragmatic
Bookshelf, Raleigh, NC and Dallas, TX, 2009.

Robert Faludi. Building Wireless Sensor Networks. O’Reilly &
Associates, Inc, Sebastopol, CA, 2010.

Mark Lutz and David Ascher. Learning Python. O’Reilly &
Associates, Inc, Sebastopol, CA, 2003.

Ben Rady and Rod Coffin. Continuous Testing: with Ruby, Rails, and
JavaScript. The Pragmatic Bookshelf, Raleigh, NC and Dallas, TX,
2011.

Maik Schmidt. Arduino: A Quick Start Guide. The Pragmatic
Bookshelf, Raleigh, NC and Dallas, TX, 2011.

David Thomas, Chad Fowler, and Andrew Hunt. Programming Ruby:
The Pragmatic Programmer’s Guide. The Pragmatic Bookshelf,
Raleigh, NC and Dallas, TX, Third Edition, 2009.

Copyright © 2012, The Pragmatic Bookshelf.

You May Be Interested In...

Click a cover for more information

B

Test-Drtven Development
o Bl

il M

Smage Yo e
e Farmm, 10 Bt

Technical

”

Hello, Android

Rt o g Caminghe's Mokl
Iurbspaestat Flatfsrm
Third Ksions

Eal dhrrrtie

Blogging

Toarm Womer Enporyiper

-

frdulne

Pragmat: Cand b

Git

Tranis S el

Seven Dalabases
in Seven Weeks

st e My [Retal e
sl o Noa, Minrrmrarrd

e -t
arsl.tem H Wik

Bruilel Avwesoane
Comanand-Line
Applications

i Hualay

Frmirnd o Campesine
Sl Yoo L

9

kv Nyl € v barnl

http://pragmaticprogrammer.com/titles/jgade
http://pragmaticprogrammer.com/titles/eband3
http://pragmaticprogrammer.com/titles/msard
http://pragmaticprogrammer.com/titles/dccar
http://pragmaticprogrammer.com/titles/jcdeg
http://pragmaticprogrammer.com/titles/actb
http://pragmaticprogrammer.com/titles/pg_git
http://pragmaticprogrammer.com/titles/pg_js
http://pragmaticprogrammer.com/titles/btlang
http://pragmaticprogrammer.com/titles/rwdata

	Programming Your Home
	​
	Table of Contents
	Praise for Programming Your Home
	Acknowledgments
	Preface
	Who Should Read This Book
	What’s in This Book
	Arduinos, Androids, and iPhones, Oh My!
	Code Examples and Conventions
	Online Resources

	Part 1: Preparations
	Chapter 1: Getting Started
	1.1 What Is Home Automation?
	1.2 Commercial Solutions
	1.3 DIY Solutions
	1.4 Justifying the Investment
	1.5 Setting Up Your Workbench
	1.6 Sketching Out Your Ideas
	1.7 Writing, Wiring, and Testing
	1.8 Documenting Your Work

	Chapter 2: Requirements
	2.1 Knowing the Hardware
	2.2 Knowing the Software
	2.3 Be Safe, Have Fun!

	Part 2: Projects
	Chapter 3: Water Level Notifier
	3.1 What You Need
	3.2 Building the Solution
	3.3 Hooking It Up
	3.4 Sketching Things Out
	3.5 Writing the Web Mailer
	3.6 Adding an Ethernet Shield
	3.7 All Together Now
	3.8 Next Steps

	Chapter 4: Electric Guard Dog
	4.1 What You Need
	4.2 Building the Solution
	4.3 Dog Assembly
	4.4 Dog Training
	4.5 Testing It Out
	4.6 Unleashing the Dog
	4.7 Next Steps

	Chapter 5: Tweeting Bird Feeder
	5.1 What You Need
	5.2 Building the Solution
	5.3 The Perch Sensor
	5.4 The Seed Sensor
	5.5 Going Wireless
	5.6 Tweeting with Python
	5.7 Putting It All Together
	5.8 Next Steps

	Chapter 6: Package Delivery Detector
	6.1 What You Need
	6.2 Building the Solution
	6.3 Hardware Assembly
	6.4 Writing the Code
	6.5 The Package Delivery Sketch
	6.6 Testing the Delivery Sketch
	6.7 The Delivery Processor
	6.8 Creating the Delivery Database
	6.9 Installing the Package Dependencies
	6.10 Writing the Script
	6.11 Testing the Delivery Processor
	6.12 Setting It Up
	6.13 Next Steps

	Chapter 7: Web-Enabled Light Switch
	7.1 What You Need
	7.2 Building the Solution
	7.3 Hooking It Up
	7.4 Writing the Code for the Web Client
	7.5 Testing Out the Web Client
	7.6 Writing the Code for the Android Client
	7.7 Testing Out the Android Client
	7.8 Next Steps

	Chapter 8: Curtain Automation
	8.1 What You Need
	8.2 Building the Solution
	8.3 Using the Stepper Motor
	8.4 Programming the Stepper Motor
	8.5 Adding the Sensors
	8.6 Writing the Sketch
	8.7 Installing the Hardware
	8.8 Next Steps

	Chapter 9: Android Door Lock
	9.1 What You Need
	9.2 Building the Solution
	9.3 Controlling the Android Door Lock
	9.4 Writing the Android Server
	9.5 Writing the Android Client
	9.6 Test and Install
	9.7 Next Steps

	Chapter 10: Giving Your Home a Voice
	10.1 What You Need
	10.2 Speaker Setup
	10.3 Giving Lion a Voice
	10.4 Wireless Mic Calibration
	10.5 Programming a Talking Lion
	10.6 Conversing with Your Home
	10.7 Next Steps

	Part 3: Predictions
	Chapter 11: Future Designs
	11.1 Living in the Near
	11.2 The Long View
	11.3 The Home of the Future

	Chapter 12: More Project Ideas
	12.1 Clutter Detector
	12.2 Electricity Usage Monitor
	12.3 Electric Scarecrow
	12.4 Entertainment System Remote
	12.5 Home Sleep Timer
	12.6 Humidity Sensor-Driven Sprinkler System
	12.7 Networked Smoke Detectors
	12.8 Proximity Garage Door Opener
	12.9 Smart HVAC Controller
	12.10 Smart Mailbox
	12.11 Smart Lighting
	12.12 Solar and Wind Power Monitors

	Part 4: Appendices
	Appendix 1: Installing Arduino Libraries
	A1.1 Apple OSX
	A1.2 Linux
	A1.3 Windows

	Appendix 2: Bibliography
	You May Be Interested In…

