

Programming	Your	Home

Automate	with	Arduino,	Android,	and	Your
Computer

by	Mike	Riley

Version:	P1.0	(February	2012)	Copyright	©	2012	The	Pragmatic	Programmers,	LLC.
This	book	is	licensed	to	the	individual	who	purchased	it.	We	don't	copy-protect	it
because	that	would	limit	your	ability	to	use	it	for	your	own	purposes.	Please	don't
break	this	trust—you	can	use	this	across	all	of	your	devices	but	please	do	not	share
this	copy	with	other	members	of	your	team,	with	friends,	or	via	file	sharing	services.

Thanks.

—Dave	&	Andy.

Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their	products	are

claimed	as	trademarks.	Where	those	designations	appear	in	this	book,	and	The	Pragmatic

Programmers,	LLC

was	aware	of	a	trademark	claim,	the	designations	have	been	printed	in	initial
capital	letters	or	in	all	capitals.	The	Pragmatic	Starter	Kit,	The	Pragmatic
Programmer,	Pragmatic	Programming,	Pragmatic	Bookshelf	and	the	linking

g	device	are	trademarks	of	The	Pragmatic	Programmers,

LLC.

Every	precaution	was	taken	in	the	preparation	of	this

book.	However,	the	publisher	assumes	no	responsibility	for	errors	or	omissions,
or	for	damages	that	may	result	from	the	use	of	information	(including	program
listings)	contained	herein.

Our	Pragmatic	courses,

workshops,	and	other	products	can	help	you	and	your	team	create	better	software
and	have	more	fun.	For	more	information,	as	well	as	the	latest	Pragmatic	titles,
please	visit	us	at

http://pragprog.com.

http://pragprog.com

This	book	is	dedicated	to	Bill,	Eileen,	and	Josie.

Table	of	Contents
Acknowledgments
Preface

Who	Should	Read	This	Book
What’s	in	This	Book
Arduinos,	Androids,	and	iPhones,	Oh	My!
Code	Examples	and	Conventions
Online	Resources

Preparations
Getting	Started

What	Is	Home	Automation?
Commercial	Solutions
DIY	Solutions
Justifying	the	Investment
Setting	Up	Your	Workbench
Sketching	Out	Your	Ideas
Writing,	Wiring,	and	Testing
Documenting	Your	Work

Requirements
Knowing	the	Hardware
Knowing	the	Software
Be	Safe,	Have	Fun!

Projects
Water	Level	Notifier

What	You	Need
Building	the	Solution
Hooking	It	Up
Sketching	Things	Out
Writing	the	Web	Mailer
Adding	an	Ethernet	Shield
All	Together	Now
Next	Steps

Electric	Guard	Dog
What	You	Need
Building	the	Solution

Dog	Assembly
Dog	Training
Testing	It	Out
Unleashing	the	Dog
Next	Steps

Tweeting	Bird	Feeder
What	You	Need
Building	the	Solution
The	Perch	Sensor
The	Seed	Sensor
Going	Wireless
Tweeting	with	Python
Putting	It	All	Together
Next	Steps

Package	Delivery	Detector
What	You	Need
Building	the	Solution
Hardware	Assembly
Writing	the	Code
The	Package	Delivery	Sketch
Testing	the	Delivery	Sketch
The	Delivery	Processor
Creating	the	Delivery	Database
Installing	the	Package	Dependencies
Writing	the	Script
Testing	the	Delivery	Processor
Setting	It	Up
Next	Steps

WebEnabled	Light	Switch
What	You	Need
Building	the	Solution
Hooking	It	Up
Writing	the	Code	for	the	Web	Client
Testing	Out	the	Web	Client
Writing	the	Code	for	the	Android	Client
Testing	Out	the	Android	Client
Next	Steps

Curtain	Automation
What	You	Need

Building	the	Solution
Using	the	Stepper	Motor
Programming	the	Stepper	Motor
Adding	the	Sensors
Writing	the	Sketch
Installing	the	Hardware
Next	Steps

Android	Door	Lock
What	You	Need
Building	the	Solution
Controlling	the	Android	Door	Lock
Writing	the	Android	Server
Writing	the	Android	Client
Test	and	Install
Next	Steps

Giving	Your	Home	a	Voice
What	You	Need
Speaker	Setup
Giving	Lion	a	Voice
Wireless	Mic	Calibration
Programming	a	Talking	Lion
Conversing	with	Your	Home
Next	Steps

Predictions
Future	Designs

Living	in	the	Near
The	Long	View
The	Home	of	the	Future

More	Project	Ideas
Clutter	Detector
Electricity	Usage	Monitor
Electric	Scarecrow
Entertainment	System	Remote
Home	Sleep	Timer
Humidity	Sensor-Driven	Sprinkler	System
Networked	Smoke	Detectors
Proximity	Garage	Door	Opener
Smart	HVAC	Controller
Smart	Mailbox

Smart	Lighting
Solar	and	Wind	Power	Monitors

Appendices
Installing	Arduino	Libraries

Apple	OSX
Linux
Windows

Bibliography

Copyright	©	2012,	The	Pragmatic	Bookshelf.

Praise	for	Programming	Your	Home
Mike	has	a	broad	technology	experience	base	that	puts	all	the	pieces	of	some
remarkable	projects	together.	It’s	amazing	that	he	makes	it	all	so	easy	and
affordable.	Don’t	miss	all	that	can	be	learned	from	this	gem.

→Michael	Bengtson,	Consultant

The	Web-Enabled	Light	Switch	project	gave	my	family	convenience	and
security	options	and	enhanced	my	knowledge	of	RS-232	communications.	It	is
nice	to	be	able	to	switch	on	lights	from	my	favorite	chair.	And	the	Tweeting	Bird
Feeder	project	has	opened	my	eyes	to	the	uses	of	radio	communications	around
the	home	for	things	besides	Wi-Fi,	and	it	will	help	in	my	work	to	contribute	to
the	preservation	of	bird	species	that	are	struggling	for	food	and	habitat.

→ Bob	Cochran,	Information	Technology	Specialist

With	this	book,	Mike	Riley	celebrates	the	Arduino	microcontroller	in	a	way	that
both	beginning	and	advanced	home	automation	hobbyists	will	enjoy.

→ Sven	Davies,	Vice	President	of	Applications

This	is	an	outstanding	reference	that	should	be	on	the	desk	of	every	DIYer.	In
much	the	same	way	that	software	engineers	mention	“The	Gang	of	Four	Patterns
Book,”	I	predict	this	text	will	eventually	be	referred	to	as	“The	Riley	Book	of
Home	Automation.”

→ Jon	Kurz,	President,	Dycet,	LLC

Every	technology	is	only	as	exciting	as	the	things	you	do	with	it.	Mike	takes	a
few	cheap	electronics	parts,	an	Arduino,	and	a	bit	of	code	and	turns	your	home
into	a	much	more	exciting	and	enjoyable	place.	His	easy-to-follow	instructions
make	every	single	one	of	these	projects	both	fun	and	useful.

→ Maik	Schmidt,	Software	Developer,	Author	of	Arduino:	A	Quick-Start
Guide

I’ve	had	more	fun	learning	new	languages,	systems,	and	gadgets	with	this	book
than	any	other	book	I’ve	read!

→ James	Schultz,	Software	Developer

Home	automation	is	great	fun,	and	Programming	Your	Home	by	Mike	Riley	will
get	you	started	right	away.	By	leveraging	this	book	and	the	easily	available
free/inexpensive	hardware	and	software,	anyone	can	tackle	some	great	projects.

→ Tony	Williamitis,	Senior	Embedded	Systems	Engineer

This	is	a	fun	and	enthusiastic	survey	of	electronic	devices	that	can	interact	with
the	real	world	and	that	starts	in	your	own	home!

→ John	Winans,	Chief	Software	Architect

Acknowledgments
I	have	been	a	lifelong	tinkerer.	My	earliest	recollection	of	dissecting	my	father’s
broken	tape	recorder	instilled	an	appreciation	for	the	technology	that	drove	it.
From	there,	erector	sets,	model	railroads,	and	programmable	calculators	led	to
personal	computers,	mobile	devices,	and	microcontrollers.	Over	the	years,	this
passion	for	learning	not	only	how	stuff	works	but	also	how	technical	concepts
can	be	remixed	with	surprising,	often	highly	satisfying	results	has	been
liberating.	That’s	why	this	book	was	such	a	joy	for	me	to	write.

Helping	others	to	see	what’s	possible	by	observing	their	surroundings	and
having	the	desire	to	take	an	active	role	in	making	their	lives	easier	with
technology	while	having	fun	is	this	book’s	primary	goal.	Yet	without	others
helping	me	distill	my	ideas	into	what	you	are	reading	now,	this	book	would	not
have	been	possible.	It	is	to	them	that	I	wish	to	express	my	deepest	gratitude	for
their	support.

A	boatload	of	thanks	goes	to	the	book’s	editor,	Jackie	Carter,	who	spent
countless	hours	ensuring	that	my	words	were	constructed	with	clarity	and
precision.	Copy	editor	Molly	McBeath	did	a	fantastic	job	catching	hidden	(from
my	view	anyway)	typos	and	grammatical	misconstructions.	Big	thanks	to
Susannah	Pfalzer	for	her	infectious	enthusiasm	and	boundless	boosts	of
encouragement	and	to	Arduino	expert	and	fellow	Pragmatic	author	Maik
Schmidt,	whose	own	success	helped	pave	the	way	for	a	book	like	this.

Many	thanks	also	go	to	John	Winans,	tech	wiz	extraordinaire,	who	refactored	the
state	machine	code	used	in	several	of	the	projects,	as	well	as	to	Sven	Davies,
Mike	Bengtson,	Jon	Bearscove,	Kevin	Gisi,	Michael	Hunter,	Jerry	Kuch,	Preston
Patton,	and	Tony	Williamitis	for	helping	to	make	this	book	as	technically

accurate	and	complete	as	it	is.	Shout-outs	also	go	to	Jon	Erikson	and	Jon	Kurz
for	their	enthusiastic	encouragement.	I	also	want	to	thank	Bob	Cochran	and	Jim
Schultz	for	providing	wonderfully	helpful	feedback	during	the	book’s	beta
period.	Thanks	also	go	to	Philip	Aaberg	for	filling	my	ears	with	music	to	code
by.	And	to	the	makers	of	and	contributors	to	the	Arduino	and	Fritzing	projects,
you	people	have	changed	the	world	for	the	better.

I	am	most	grateful	to	my	wife,	Marinette,	and	my	family	for	allowing	me	to
tunnel	away	for	months	in	my	mythical	man	cave	to	complete	this	book.	And	I
can’t	gush	enough	over	the	wonderful	pencil	illustrations	that	my	daughter	drew
for	the	book.	I	am	so	proud	of	you,	Marielle!

Finally,	I	am	sincerely	thankful	to	Dave	Thomas	and	Andy	Hunt	for	their
passion	and	vision.	You’re	the	best.

Mike	Riley
mailto:mike@mikeriley.com

Naperville,	IL,	December	2011

Copyright	©	2012,	The	Pragmatic	Bookshelf.

mailto:mike@mikeriley.com

Preface
Welcome	to	the	exciting,	empowering	world	of	home	automation!	If	you	have
ever	wanted	your	home	to	do	more	than	just	protect	you	against	the	outside
elements	and	want	to	interface	it	to	the	digital	domain,	this	book	will	show	you
how.	By	demonstrating	several	easy-to-build	projects,	you	will	be	able	to	take
the	skills	you	learned	from	this	book	and	expand	upon	and	apply	them	toward
custom	home	automation	projects	of	your	own	design.

The	book’s	primary	objective	is	to	get	you	excited	about	the	broader	possibilities
for	home	automation	and	instill	the	confidence	you	need	to	ultimately	build	upon
these	and	your	own	ideas.	The	projects	also	make	great	parent-child	learning
activities,	as	the	finished	products	instill	a	great	sense	of	accomplishment.	And
who	knows?	Your	nifty	home	automation	creations	may	even	change	the	world
and	become	a	huge	new	business	opportunity	for	other	homeowners	actively
seeking	an	automation	solution	that	saves	them	time	and	money.

Who	Should	Read	This	Book
Programming	Your	Home	is	best	suited	to	DIYers,	programmers,	and	tinkerers
who	enjoy	spending	their	leisure	time	building	high-tech	solutions	to	further
automate	their	lives	and	impress	their	friends	and	family	with	their	creations.
Essentially,	it	is	for	those	who	generally	enjoy	creating	custom	technology	and
electronics	solutions	for	their	own	personal	living	space.

A	basic	understanding	of	Arduino	and	programming	languages	like	Ruby	and
Python	are	recommended	but	not	required.	You	will	learn	how	to	combine	these
technologies	in	unique	configurations	to	resolve	homemaker	annoyances	and
improve	home	management	efficiencies.

In	addition	to	the	inclusion	of	Python	scripts	and	Ruby	on	Rails-based	web
services,	several	of	the	projects	call	upon	Google’s	Android	platform	to	help
enhance	the	data	event	collection,	visualization,	and	instantiation	of	activities.	A
basic	familiarity	with	the	Android	SDK	will	be	beneficial	so	that	the	projects
that	make	use	of	the	Android	OS	can	offer	a	more	mobile	reach.

If	you’re	the	type	of	person	who	prefers	to	build	versus	buy	your	home
accessories,	this	book	will	further	motivate	you	to	use	what	you	learned	in	the
book	as	a	starting	point	to	expand	upon	and	optimize	them	in	various	ways	for
their	environment.	Even	though	some	of	the	topics	deal	with	multiple	software-
and	hardware-based	solutions,	they	are	easy	to	follow	and	inexpensive	to	build.
Most	of	all,	they	show	how	a	few	simple	ideas	can	transform	a	static	analog
environment	into	a	smart	digital	one	while	having	fun.

What’s	in	This	Book
After	a	basic	introduction	to	home	automation	and	the	tools	of	the	trade,	this
book	will	teach	you	how	to	construct	and	program	eight	unique	projects	that
improve	home	utility	and	leisure-time	efficiencies.	Each	project	incorporates	a
variety	of	inexpensive	sensors,	actuators,	and	microcontrollers	that	have	their
own	unique	functions.	You	will	assemble	the	hardware	and	codify	the	software
that	will	perform	a	number	of	functions,	such	as	turning	on	and	off	power
switches	from	your	phone,	detecting	package	deliveries	and	transmitting	emails
announcing	their	arrival,	posting	tweets	on	Twitter	when	your	bird	feeder	needs
to	be	refilled,	and	opening	and	closing	curtains	depending	on	light	and
temperature,	and	more.

Because	the	recommended	skill	set	for	building	these	solutions	includes	some
familiarity	with	programming,	this	book	builds	upon	several	previously
published	Pragmatic	Bookshelf	titles.	If	you	would	like	to	learn	more	about
programming	Arduinos	or	writing	Ruby	or	Python	scripts,	I	strongly	recommend
checking	out	the	books	listed	in	Appendix	2,	Bibliography.

Each	project	begins	with	a	general	introduction	and	is	followed	by	a	What	You
Need	section	that	lists	the	hardware	parts	used.	This	is	followed	by	a	section
called	Building	the	Solution	that	provides	step-by-step	instructions	on
assembling	the	hardware.	Programming	Your	Home	will	call	upon	the	Arduino
extensively	for	most	(but	not	all)	of	the	projects.	Once	the	hardware	is
constructed,	it	can	be	programmed	to	perform	the	automation	task	we	built	it	to
do.	Programs	can	range	from	code	for	Arduino	microcontrollers	to	scripts	that
execute	on	a	computer	designed	to	control,	capture,	and	process	the	data	from
the	assembled	hardware	elements.

The	book	concludes	with	a	chapter	on	future	projections	in	home	automation	and
a	chapter	filled	with	idea	starters	that	reuse	the	hardware	and	software
approaches	demonstrated	in	the	eight	projects.

Arduinos,	Androids,	and	iPhones,	Oh	My!
With	the	meteoric	rise	of	mobile	device	proliferation,	the	post-PC	moniker	has
made	its	way	into	the	tech	world’s	vocabulary.	I	am	a	big	proponent	of
technology	shifts,	but	I	am	also	old	enough	to	have	lived	through	three	major
computing	revolutions	(the	shift	from	mainframes	to	PCs,	the	rise	of	the	Internet,
and	the	shift	from	PCs	to	mobile	devices)	and	know	that	change	isn’t	as	fast	as
people	say	it	is.	Until	mobile	applications	can	be	developed	on	mobile	devices
the	way	PC	applications	can	be	developed	on	PCs,	a	Linux,	Windows,	or	Mac
computer	will	be	a	central	requirement	for	developing	mobile	apps.	The	same
holds	true	for	Arduino	programming.

That	said,	the	times	are	indeed	a-changing.	Microsoft	Research	was	one	of	the
first	major	phone	OS	providers	to	attempt	to	create	native	mobile	applications
directly	on	the	mobile	device	with	their	release	of	TouchStudio.	Google	engineer
Damon	Kohler	created	the	Scripting	Layer	for	Android	(SL4A)	that	gives
Android	users	the	ability	to	write	fairly	sophisticated	programs	using	a	text
editor	on	their	phone.	Coupled	with	Sparkfun’s	IOIO	(“yo-yo”)	board,	we’re
already	seeing	early	glimpses	of	what	could	replace	the	PC	for	some	of	the
scripts	created	for	this	book.

Since	you	will	need	a	Mac,	Linux,	or	Windows	computer	to	program	the
Arduinos	and	mobile	apps	in	this	book,	this	computer	will	also	be	the	machine
that	runs	the	server-side	programs	that	interpret	and	extend	information	out	to
your	mobile	devices.	Of	course,	if	you	only	have	one	computer	and	it’s	a	laptop
that	travels	with	you,	consider	purchasing	a	cheap	Linux	or	Mac	to	run	as	your
home	server.	Not	only	will	you	benefit	from	having	a	dedicated	system	to	run
the	monitoring	apps	24/7/365,	but	it	can	also	serve	as	your	home	Network
Attached	Storage	(NAS)	server	as	well.

I	am	a	believer	in	open	source	hardware	and	software.	As	such,	the	projects	in
the	book	depend	upon	these.	I	am	also	technology-agnostic	and	rarely	have	any
overriding	devotion	to	one	hardware	supplier	or	programming	language.	Code
for	this	book	could	have	been	presented	just	as	easily	in	Mono-based	C#	and

Perl,	but	I	opted	for	Ruby	and	Python	because	of	their	portability	and	multiparty
open	source	support.	I	could	have	used	a	Windows	or	Linux	machine	as	the
server	and	development	system	but	chose	Mac	for	the	book	because	Ruby	and
Python	are	preinstalled	with	the	OS,	thereby	eliminating	the	time	and	space
required	to	install,	configure,	and	troubleshoot	the	operating	environment.

In	accordance	with	this	open	source	philosophy,	I	also	opted	to	demonstrate	the
mobile	application	examples	exclusively	for	the	Android	OS.	While	I	personally
prefer	iOS	devices	as	the	platform	of	choice	for	my	mobile	lifestyle,	the
overhead	associated	with	writing	applications	for	iOS	is	a	hassle.	In	addition	to
learning	Objective-C	and	the	various	frameworks	as	well	as	dealing	with	the
burden	of	memory	management,	deploying	iOS	apps	requires	either	a	jailbroken
device	or	the	legitimate	purchase	of	an	annual	membership	to	Apple’s	iPhone
developer	network.	Conversely,	Android’s	SDK	and	application	deployment	is
free	and	open.	Android	programs	can	also	multitask	better	than	iOS	programs.
Of	course,	these	two	advantages	also	bring	on	greater	security	and	resource
utilization	risks.	That	said,	I	encourage	readers	who	prefer	the	mobile	demos	to
run	on	non-Android	devices	to	port	the	simple	client	programs	presented	in	this
book	to	their	favorite	mobile	OS	and	share	these	conversions	with	the
Programming	Your	Home	community.

Another	term	that	is	gaining	a	foothold	in	the	tech	press	is	the	“Internet	of
Things.”	This	phrase	refers	to	the	idea	that	with	the	proliferation	of	network-
connected	microcontrollers,	Internet-based	communication	between	such	small
devices	will	eventually	outnumber	people	surfing	the	Web.	While	that	may	be
the	case	for	submitting	data	upstream,	reaching	such	a	device	from	the	Internet	is
still	a	hassle.	Besides	the	technical	knowledge	required	to	set	up	a	dynamic	DNS
and	securely	configure	port	forwarding	to	easily	reach	the	device,	ISPs	may
block	outbound	ports	to	prevent	end	consumers	from	setting	up	dedicated
servers	on	popular	network	ports	like	FTP,	HTTP/S,	and	SMTP.

The	projects	in	this	book	should	work	perfectly	fine	in	a	home	local	area
network.	However,	obtaining	sensor	data	outside	of	this	local	network	is	a
challenge.	How	do	you	check	on	the	status	of	something	like	a	real-time
temperature	reading	without	going	through	the	hassles	of	opening	and

forwarding	ports	on	your	router	(not	to	mention	the	potential	security	risks	that
entails)?

Fortunately,	several	companies	have	begun	to	aggressively	offer	platforms
accessible	via	simple	web	service	APIs	to	help	overcome	these	hassles.	Three	of
these	gaining	momentum	are	Pachube,	Exosite,	and	Yaler.[1]	Configuring	and
consuming	their	services	is	a	fairly	straightforward	process.	I	encourage	you	to
visit	these	sites	to	learn	more	about	how	to	incorporate	their	messaging
capabilities	into	your	own	projects.

Code	Examples	and	Conventions
The	code	in	this	book	consists	of	C/C++	for	Arduino,	Java	for	Android,	Ruby
for	web	middleware,	and	Python	for	desktop	scripts.	Most	of	the	code	examples
are	listed	in	full,	except	when	burdened	by	external	library	overhead	(such	as	in
the	case	of	Android	and	Ruby	on	Rails	program	listings).	Syntax	for	each	of
these	languages	is	highlighted	appropriately,	and	much	of	the	code	is	commented
inline	along	with	bullet	markings	to	help	bring	attention	to	the	big	ideas	in	the
listings.

Highlights	and	sidebars	are	used	sparingly	in	the	book	in	an	effort	to	keep
information	moving	at	a	quick	yet	manageable	clip.

Online	Resources
Visit	the	book’s	website	at	http://pragprog.com/titles/mrhome,	where	you	can
download	the	code	for	all	the	projects,	participate	in	the	book’s	discussion
forum,	ask	questions,	and	post	your	own	home	automation	ideas.	Bugs,	typos,
omissions,	and	other	errors	in	the	book	can	be	found	on	the	book’s	errata	web
page.

Other	popular	website	resources	include	the	popular	DIY	websites	Makezine,
and	Instructables,[2]	where	participants	share	a	wide	variety	of	home-brewed
creations	with	their	peers.

There	are	also	several	IRC	channels	on	freenode.net	and	SIG	forums	on	Google
Groups	dedicated	to	the	subject,	with	many	focused	on	singular	aspects	of	DIY
gadget	design,	home	automation,	and	hardware	hacking.[3]

OK,	enough	with	the	preamble.	Let’s	get	ready	to	build	something!

Footnotes

[1]
http://www.pachube.com,	http://www.exosite.com,	and
http://www.yaler.org,	respectively.

[2] http://www.makezine.com	and	http://www.instructables.com,	respectively.

[3] http://groups.google.com/group/comp.home.automation/topics

Copyright	©	2012,	The	Pragmatic	Bookshelf.

http://pragprog.com/titles/mrhome
http://www.pachube.com
http://www.exosite.com
http://www.yaler.org
http://www.makezine.com
http://www.instructables.com
http://groups.google.com/group/comp.home.automation/topics

Part	1	
Preparations

Chapter	1

Getting	Started
Before	we	start	wiring	up	hardware	and	tapping	out	code,	let’s	lay	down	the
foundation,	starting	with	what	exactly	we	mean	by	home	automation,	what’s
been	available	in	the	consumer	space	in	the	past,	and	why	building	our	own
solutions	makes	sense	today	and	in	the	future.

We	will	also	review	a	couple	of	design	and	construction	best	practices	that	will
be	put	to	good	use	when	assembling	the	projects	in	this	book.

We’ll	start	by	defining	what	we	mean	by	home	automation.	Next	we’ll	consider
some	of	the	prepackaged	commercial	solutions	on	the	market,	and	then	we’ll
take	a	quick	snapshot	of	some	of	the	more	popular	custom	automation	hardware
and	software	projects.	The	chapter	will	conclude	with	some	of	the	tools	and
practices	that	have	helped	me	quite	a	bit	when	building	the	projects	in	this	book
as	well	as	with	other	projects	beyond	the	home	automation	category.

1.1	What	Is	Home	Automation?
So	what	exactly	does	the	term	home	automation	mean?	At	its	most	basic	level,
it’s	a	product	or	service	that	brings	some	level	of	action	or	message	to	the	home
environment,	an	event	that	was	generated	without	the	homeowner’s	direct
intervention.	An	alarm	clock	is	a	home	automation	device.	So	is	a	smoke	alarm.
The	problem	is,	these	stand-alone	devices	don’t	use	a	standard	network
communication	protocol,	so	they	can’t	talk	to	one	another	the	way	that
networked	computers	can.

One	of	my	earliest	memories	of	home	automation	was	when	the	Mr.	Coffee
automatic	drip	coffee	machine	came	out	in	the	early	1970s.	The	joy	this	simple
kitchen	appliance	brought	my	coffee-drinking	parents	was	genuine.	They	were
so	pleased	to	know	that	when	they	woke	up	in	the	morning	a	freshly	brewed	pot
of	coffee	would	be	waiting	for	them.	Who	would	have	thought	that	such	a	simple
concept	as	a	coffee	maker	combined	with	an	alarm	clock	would	change	their
world?

Now	that	we’re	in	the	twenty-first	century,	rudimentary	coffee	makers	are
getting	a	makeover	by	tinkerers	bolting	network	adapters,	temperature	sensors,
and	microcontrollers	to	make	the	brew	at	the	right	time	and	temperature	and	to
send	a	text	message	alert	that	the	beverage	is	ready	for	consumption.	It’s	only	a
matter	of	time	before	manufacturers	incorporate	inexpensive	electronics	into
their	appliances	that	do	what	tinkerers	have	been	doing	with	their	home
electronics	for	years.	But	a	standard	communication	protocol	among	such
devices	remains	elusive.	Nevertheless,	efforts	are	afoot	by	a	number	of	home
automation	vendors	to	address	that	problem.

1.2	Commercial	Solutions
The	number	of	attempts	to	standardize	home	automation	communication
protocols	has	been	ongoing	nearly	as	long	as	Mr.	Coffee	has	been	in	existence.
One	of	the	earliest	major	players	was	X10,	a	company	that	still	offers	basic	and
relatively	inexpensive	home	automation	solutions	today.	X10	takes	advantage	of
existing	electrical	wiring	in	the	home.	It	uses	a	simple	pulse	code	protocol	to
transmit	messages	from	the	X10	base	station	or	from	a	computer	connected	to	an
X10	communication	interface.	But	problems	with	signal	degradation,
checksums,	and	return	acknowledgments	of	messages,	as	well	as	X10’s	bulky
hardware	and	its	focus	on	controlling	electrical	current	via	on/off	relay	switches,
have	constrained	X10’s	broader	appeal.

Other	residentially	oriented	attempts	at	standards,	such	as	CEBus	and	Insteon,
have	been	made,	but	none	have	attained	broad	adoption	in	the	home.	This	is
partly	due	to	the	chicken-and-egg	problem	of	having	appliance	and	home
electronics	manufacturers	create	devices	with	these	interfaces	and	protocols
designed	into	their	products.

Most	recently,	Google	has	placed	its	bet	on	the	Android	operating	system	being
embedded	into	smart	devices	throughout	the	home.	Time	will	tell	if	Google	will
succeed	where	others	have	failed,	but	history	is	betting	against	it.

Rather	than	wait	another	twenty	years	for	a	winning	standard	to	emerge,
embedded	computing	devices	exist	today	that	employ	standard	TCP/IP	to
communicate	with	other	computers.	This	hardware	continues	to	drop	to	fractions
of	the	prices	they	cost	only	a	few	years	ago.	So	while	the	market	continues	to
further	commoditize	these	components,	the	time	is	now	for	software	developers,
home	automation	enthusiasts,	and	tinkerers	to	design	and	implement	their	own
solutions.	The	lucky	few	will	uncover	and	market	a	cost-effective,	compelling
solution	that	will	one	day	catch	on	like	wildfire	and	finally	provide	the	impetus
to	forever	change	our	domestic	lives.

1.3	DIY	Solutions
The	Do-It-Yourself	category	in	home	automation	is	more	active	today	than	ever
before.	The	combination	of	inexpensive	electronics	with	low-cost	networked
computers	make	this	option	extremely	attractive.	There’s	other	reasons	that
make	DIY	an	ideal	pursuit.	Unlike	proprietary	commercial	offerings,	the	projects
you	build	are	not	mysterious	black	boxes.	You	have	the	source	code.	You	have
the	knowledge.	You	have	the	measurements,	the	metrics,	and	the	methods.

Not	only	will	you	know	how	to	build	it,	you	will	know	how	to	troubleshoot,
repair,	and	enhance.	None	of	the	commercial	solutions	can	match	exactly	what
you	may	need.	Home	automation	vendors	have	to	generalize	their	products	to
make	them	appeal	to	a	large	consumer	base.	By	doing	so,	they	don’t	have	the
luxury	of	creating	one-off	solutions	that	exactly	match	one	customer’s	specific
needs.	But	with	some	rudimentary	knowledge	and	project	construction
experience,	you’ll	gain	the	confidence	to	create	whatever	design	matches	your
situation.

For	example,	the	first	project	in	this	book	builds	a	sump	pit	notifier	that	emails
you	when	water	levels	exceed	a	certain	threshold.	While	commercial	systems
have	audible	alarms,	none	that	I	have	found	at	the	local	hardware	store	have	the
means	to	contact	you	via	such	messaging.	And	should	you	need	to	modify	the
design	(add	a	bright	flashing	LED	to	visually	broadcast	the	alert,	for	example),
you	don’t	need	to	purchase	a	whole	new	commercial	product	that	includes	this
feature.

Walk	around	your	house.	Look	for	inefficiencies	and	repetitive	tasks	that	drive
you	crazy	the	way	George	Bailey	was	with	pulling	off	the	loose	finial	on	his
staircase’s	newel	post.	Take	note	of	what	can	be	improved	with	a	little	ingenuity
and	automation.	You	may	be	surprised	at	just	how	many	ideas	you	can	quickly
come	up	with.

1.4	Justifying	the	Investment
Let’s	be	honest.	Spending	more	money	on	parts	that	may	or	may	not	work	well
together	versus	buying	a	cheaper	purpose-built	device	that	meets	or	exceeds	the
functionality	of	a	homegrown	solution	is	simply	not	a	good	investment.	Sure,
there	may	be	some	value	derived	from	the	knowledge	gained	from	the	design
experience,	the	pleasure	of	building	the	solution,	and	the	satisfaction	of	seeing
your	creation	come	to	life.	But	justifying	such	an	investment	to	a	budget-
conscious	spouse,	for	example,	may	deflate	whatever	gains	you	have	made	in	the
satisfaction	department.

When	considering	any	new	design	approach,	strive	for	a	scenario	where	you	will
maximize	your	time,	equipment	investment,	and	learning	potential.	You	may
have	to	try	several	experiments	and	iterations	before	the	hardware	and	software
come	together	and	work	the	way	you	envisioned.	But	if	you	keep	at	it,	you	will
be	well	rewarded	for	your	persistence.	Not	only	will	you	achieve	high	points	for
devising	a	low-cost	solution,	but	such	constraints	will	help	drive	creativity	to
even	higher	levels.	That’s	why	I	have	tried	my	best	to	keep	all	the	projects	in	this
book	within	a	reasonable	budget,	and	I	encourage	reuse	of	old	electronic	parts
and	materials	as	much	as	possible.

Do	your	homework.	Research	online	to	see	who	may	have	attempted	to	build
what	you	have	in	mind.	Did	they	succeed?	Was	it	worth	the	money	and	time	they
invested?	Is	there	a	commercially	viable	alternative?

If	you	determine	that	your	idea	is	unique,	put	together	an	estimate	of	the
expenses	in	terms	of	your	time	and	of	the	materials	you	need	to	purchase.
Remember	to	also	include	the	cost	of	any	tools	you	need	to	buy	to	construct	and
test	the	project’s	final	assembly.	This	added	expense	is	not	negligible,	especially
if	you’re	just	starting	down	the	DIY	road.	As	you	get	more	involved	with
hardware	projects,	you	will	quickly	find	that	your	needs	will	expand	from	an
inexpensive	soldering	iron	and	strands	of	wire	to	a	good	quality	multimeter	and
perhaps	even	an	oscilloscope.	But	the	nice	thing	about	building	your	own
solutions	is	that	you	can	build	them	at	your	own	pace.	You	will	also	find	that	as

your	network	of	DIYers	grows,	your	opportunities	for	group	discussion,
equipment	loans,	insightful	recommendations,	and	encouragement	will	grow
exponentially.

1.5	Setting	Up	Your	Workbench
Good	assembly	follows	good	design.	Building	these	projects	in	a	frustration-free
environment	will	help	keep	your	procedures	and	your	sanity	in	check.

Work	in	a	well-lit,	well-ventilated	area.	This	is	especially	important	when
soldering.	Open	a	window	and	use	a	small	fan	to	push	the	fumes	outside.	Use	a
soldering	exhaust	fan	if	an	open	window	isn’t	an	option.

If	your	work	space	can	afford	it,	have	a	large	table	to	spread	out	your	electronic
parts.	Keep	it	close	to	power	outlets	and	have	a	power	strip	on	the	table	for	easy
access.

Organize	your	components	with	small	craft	containers,	baby	food	jars,	pill
boxes,	Altoids	tins—anything	that	helps	keep	the	variety	of	capacitors,	resistors,
LEDs,	wires,	shields,	motors,	and	sensors	sorted	will	make	it	much	easier	to
keep	track	of	your	parts	inventory.

Have	your	computer	stationed	near	or	on	the	work	space.	This	is	a	no-brainer	if
it’s	a	laptop.	If	it’s	a	desktop,	minimize	its	table	footprint	by	only	placing	a
monitor,	mouse,	and	keyboard	(both	preferably	wireless)	on	the	table	to	leave	as
much	unobstructed	working	space	as	possible.

Keep	clutter	away	from	underneath	and	around	the	table.	Not	only	does	this	aid
fire	prevention,	but	doing	so	will	also	make	it	far	easier	to	find	that	elusive
component	when	it	rolls	off	the	table	and	bounces	toward	the	unknown.

Lastly,	keep	the	work	space	dedicated	to	project	work.	Some	projects	can	be	like
building	a	jigsaw	puzzle.	You	need	a	place	for	the	half-assembled	pieces	to	sit
while	life	goes	on.	Being	able	to	sit	down	and	start	working,	rather	than	start
unboxing	and	repackaging	a	fur	ball	of	wires	and	parts,	makes	building	projects
a	joy	instead	of	a	chore.

1.6	Sketching	Out	Your	Ideas
When	inspiration	strikes,	nothing	beats	old-fashioned	pencil	and	paper	to
quickly	draw	out	your	ideas.	For	those	who	prefer	to	brainstorm	their	designs	on
a	computer,	several	free,	open	source,	cross-platform	tools	have	helped	me
assemble	my	ideas	and	document	my	work:

Freemind	is	great	for	organizing	thoughts,	objectives,	and	dependencies.[4]
This	mature	mind-mapping	application	helps	you	make	sense	of	a	brain
dump	of	ideas	and	see	the	links	between	them.	This	will	save	you	time	and
money	because	you	will	be	able	to	spot	key	ideas,	eliminate	redundancies,
and	prioritize	what	you	want	to	accomplish.

Fritzing	is	a	diagraming	application	specifically	designed	for	documenting
Arduino-centric	wiring.[5]	Unfortunately,	it’s	still	a	work	in	progress	and	is
rough	around	the	edges.	It	also	doesn’t	have	a	number	of	the	popular
sensors	iconically	represented	yet,	but	the	object	library	is	growing	as	more
people	contribute	to	the	project.	I	use	this	application	exclusively	for
documenting	my	Arduino-based	projects,	which	is	why	the	wiring	diagrams
in	this	book	were	generated	by	Fritzing.

Inkscape	is	an	easy-to-use	vector-based	drawing	program	that	helps	sketch
out	ideas	beyond	the	Arduino-centricity	of	Fritzing.[6]	While	Inkscape	is
mainly	intended	for	graphic	artists,	it	has	accurate	measurement	tools	that
are	great	for	scoping	out	bracket	and	enclosure	ideas	for	your	projects.

Going	beyond	the	desktop,	tablets	are	rapidly	taking	over	the	role	that	were	once
the	domain	of	traditional	paper	uses.	In	fact,	it	wouldn’t	surprise	me	if	you’re
reading	this	book	on	an	iPad	or	a	Kindle	right	now.	Beyond	just	reference
lookups,	tablets	are	excellent	for	brainstorming	ideas	and	creating	initial
sketches	of	preliminary	project	designs.	An	iPad	(or	Android	tablet,	for	that
matter)	combined	with	a	sturdy	stand	also	makes	for	a	handy	electronic
reference.	Load	up	your	sketches,	track	your	progress,	reorder	priorities,	and
make	notes	along	the	way.

My	current	favorite	iPad	apps	for	my	projects	include	the	following:

Elektor	Electronic	Toolbox	is	an	electronic	parts	reference	with	a	variety	of
helpful	calculators	and	conversion	tools.[7]

iCircuit	is	a	electronic	circuit	simulator	that	makes	building	and
understanding	circuits	far	easier	than	static	diagrams	on	a	printed	page.[8]

iThoughts	HD	is	a	mind-mapping	application	compatible	with	importing
and	exporting	Freemind	files.[9]

miniDraw	is	a	vector-based	drawing	program	that	can	export	to	SVG
format,	perfect	for	importing	your	sketches	into	Inkscape.[10]

In	addition	to	designing	and	documenting	your	projects,	well-executed	projects
also	rely	on	taking	accurate	measurements	and	running	tests	to	validate	your
work.

1.7	Writing,	Wiring,	and	Testing
Unfortunately,	no	good	software	emulator	exists	yet	for	the	Arduino;	fortunately,
programs	for	this	platform	are	usually	small	and	specific	enough	such	that	the
compile-run-debug	cycles	are	tolerable.	Good	coding	and	testing	techniques	go	a
long	way	toward	ensuring	a	high-quality	outcome.	The	same	goes	for
constructing	and	wiring	up	the	physical	electrical	connections.

While	nearly	all	of	the	projects	in	this	book	can	be	constructed	without	solder,
permanent	installations	require	good	soldering	techniques	to	ensure	a	conductive
pathway.	It’s	best	to	verify	(usually	with	the	help	of	a	breadboard)	that	the
connections	work	as	expected	before	making	them	permanent	with	solder.

Use	good	code-testing	techniques.	Whether	for	microcontroller	code	for	the
Arduino	or	server-side	code	for	your	Ruby	or	Python	scripts,	Test-Driven
Development	(TDD)	is	a	good	practice	to	adopt.	There	are	a	number	of	good
testing	frameworks	and	books	available	on	the	subject.	Read	Ian	Dees’s	article,
“Testing	Arduino	Code,”	in	the	April	2011	edition	of	PragPub	magazine,[11]	as
well	as	Continuous	Testing:	with	Ruby,	Rails,	and	JavaScript	[RC11].

Run	unit	tests	like	py.test	when	writing	Python-powered	scripts.	When	coding	in
Ruby	and	creating	Rails-based	web	front	ends,	consider	using	Rspec	(for	more
details	on	using	Rspec,	read	The	RSpec	Book	[CADH09]).	Use	the	Android
testing	framework	for	your	Android	applications.[12]	Even	when	working	on
small	applications,	using	proven	testing	methodologies	will	help	keep	you	sane
while	further	elevating	the	quality	in	your	code.

Know	how	to	use	a	multimeter.	Like	a	software	debugger,	a	multimeter	can
come	in	quite	handy	when	trying	to	figure	out	what’s	happening	inside	your
project—for	example,	where	a	short	might	be	stepping	on	your	project.	Besides
detecting	problems,	a	multimeter	is	also	useful	for	measuring	electrical	output.
For	example,	you	can	also	use	it	to	determine	if	a	solar	battery	pack	can	deliver
enough	uninterrupted	energy	to	power	a	microcontroller-operated	servo.

If	you’re	not	familiar	with	how	a	multimeter	operates,	just	type	“voltmeter
tutorial	video”	in	your	favorite	search	engine.	There	are	plenty	online	to	choose
from.

1.8	Documenting	Your	Work
Hand-drawn	scribbles	offer	nice	starting	points,	but	often	projects	take	twists
and	turns	along	the	way	that	have	to	account	for	limited	resources	or	hardware
that	just	doesn’t	work	as	planned.	The	final	product	may	be	vastly	different	from
the	original	design.	That’s	why	it’s	so	important	to	finish	a	project	with	accurate,
clean,	and	concise	documentation,	especially	if	you	plan	to	share	your	design
with	others.

Using	applications	like	Fritzing	can	aid	with	the	generation	of	clean,	full-color
wiring	diagrams.	Doing	so	will	go	a	long	way	toward	showing	exactly	how	to
wire	up	a	project.	Nothing	is	worse	than	seeing	blurry,	angled	Flickr	photos	or
YouTube	videos	of	wires	plugging	into	hard-to-see	shield	or	breadboard	pinholes
as	the	primary	means	of	documentation.	Having	those	are	nice	supplementals,
but	any	well-designed	project	should	be	accompanied	by	clear	and	easy-to-
follow	wiring	illustrations.

Leave	verbose	comments	in	your	code,	even	for	the	simple	scripts	and	sketches.
Not	only	will	it	help	you	and	those	you	share	the	code	with	understand	what
various	routines	are	doing,	good	comments	will	also	put	you	back	in	the	frame
of	mind	you	were	in	when	writing	the	code	in	the	first	place.	And	if	you	share
your	code	on	various	repository	sites	like	Github	and	Sourceforge,	well-
commented	code	shows	a	greater	level	of	professional	polish	that	will	gain	you
more	respect	among	your	peers.

With	all	these	recommendations,	keep	in	mind	that	the	most	important	takeaway
from	the	book’s	projects	is	to	have	fun	doing	them.	These	rewarding	experiences
will	encourage	you	to	use	these	projects	as	starting	points	and	infuse	your	own
unique	needs	and	design	goals	into	them.

In	the	next	chapter,	we	will	review	the	hardware	and	software	we	will	use	and
take	into	account	the	optimal	configurations	of	each.

Footnotes

[4] http://freemind.sourceforge.net

[5] http://fritzing.org/

[6] http://inkscape.org

[7] http://www.creating-your-app.de/electronic_toolbox_features.html?&L=1

[8] http://icircuitapp.com/

[9] http://ithoughts.co.uk

[10] http://minidraw.net/

[11] http://www.pragprog.com/magazines/2011-04/testing-arduino-code

[12] http://developer.android.com/guide/topics/testing/testing_android.html

Copyright	©	2012,	The	Pragmatic	Bookshelf.

http://freemind.sourceforge.net
http://fritzing.org/
http://inkscape.org
http://www.creating-your-app.de/electronic_toolbox_features.html?&L=1
http://icircuitapp.com/
http://ithoughts.co.uk
http://minidraw.net/
http://www.pragprog.com/magazines/2011-04/testing-arduino-code
http://developer.android.com/guide/topics/testing/testing_android.html

Chapter	2

Requirements
Before	diving	into	the	book’s	projects,	we	need	to	consider	the	materials	and
best	practice	methodologies	we	will	employ	when	building	the	solutions.

A	key	tenet	I	practice	in	this	book	is	for	the	various	projects	to	be	as	easy	and
inexpensive	to	build	as	possible.	While	it	may	be	fun	to	construct	an	elaborate
Rube	Goldberg	contraption	that	costs	hundreds	of	dollars	to	open	a	can	of	soup,
it’s	far	more	practical	to	spend	a	dollar	on	a	can	opener	that	you	can	buy	from
the	store.	I	have	tried	my	best	to	maximize	the	value	of	money	and	time	with
each	project.	As	such,	few	of	them	should	cost	more	than	sixty	dollars	in	parts	or
take	more	than	an	hour	to	construct.

It’s	also	good	to	practice	reuse	whenever	possible.	This	is	far	easier	for	software
than	for	hardware,	but	it	can	be	done.	That	is	why	an	inexpensive
microcontroller	board	like	the	Arduino	is	at	the	center	of	several	of	these
projects.[13]	In	an	effort	to	save	money	on	the	hardware	investment,	it	may	be
worthwhile	to	try	out	one	or	two	projects	concurrently	and	decide	which	ones
make	the	most	positive	impact	before	buying	a	half	dozen	Arduino	boards.	After
you	have	built	the	projects	that	you’re	most	interested	in,	then	build	upon	them,
improve	them,	and	remix	them.	When	you	have	an	especially	cool	creation,
contribute	your	discoveries	to	the	Programming	Your	Home	book	forum.

Most	software	development	projects	typically	do	not	require	much	more	than	a
computer	and	the	choice	of	language	and	frameworks	the	programming	logic
executes	within.	But	with	the	addition	of	hardware	sensors,	motors,	and	purpose-
built	radios	and	controllers,	the	design	and	construction	workflow	is	a	little	more

complex.	Essentially,	you	are	building	two	major	components	with	each	project:
the	physical	collection	of	hardware	and	the	software	that	will	measure,	interpret,
and	act	on	the	data	that	the	hardware	collects.	Let’s	take	a	look	at	what
comprises	these	two	key	development	aspects.

2.1	Knowing	the	Hardware
The	Arduinos,	sensors,	and	motors	(technically	referred	to	as	actuators)	used	in
the	projects	can	be	purchased	from	a	number	of	online	retailers,	with	my	current
two	favorites	being	Adafruit	Industries	and	Sparkfun.[14]	For	the	budget-
conscious	builder,	Craigslist	and	eBay	offer	money-saving	deals.	Purchasing
used	parts	from	these	online	classified	listing	services	may	come	in	especially
handy	when	searching	for	old	Android	handsets	and	X10	controls.	But	buyer
beware:	there	is	often	little	recourse	you	can	take	should	a	used	part	stop
working	a	few	days	after	you	have	received	it.	Companies	like	Adafruit	and
Sparkfun	stake	their	reputations	on	their	over-the-top	customer	support	and	will
usually	accommodate	any	reasonable	replacement	request.

Each	project	in	the	book	contains	a	What	You	Need	section	that	lists	the
hardware	and	software	components	required	to	build	the	solution.	The	hardware
used	is	nothing	exotic	or	difficult	to	find	and	purchase	online,	and	some	projects
even	incorporate	common	household	items	like	dry	cleaning	clothes	hangers	and
cloth	scraps	in	their	parts	list.	Here	is	a	complete	inventory	of	electronic
components	required	to	build	the	projects	in	this	book	and	their	estimated	per
item	costs:

Arduino	Uno,	Duemilanove,	or	Diecimila	-	$30

Ethernet	shield	-	$45

Wave	shield	with	speaker,	wire,	and	SD	card	-	$35

Passive	infrared	(PIR)	motion	sensor	-	$10

Flex	sensor	-	$12

Force	sensitive	resistor	-	$7

TMP36	analog	temperature	sensor	-	$2

CdS	photoresistor	(commonly	referred	to	as	a	photocell)	-	$1

Standard	servo	motor	-	$15

Smarthome	electric	12VDC	door	strike	-	$35

Two	XBee	modules	and	adapter	kits	-	$70

FTDI	connector	cable	-	$20

Solar	charger	with	built-in	rechargeable	battery	-	$30

X10	CM11A	ActiveHome	serial	computer	interface	-	$50

X10	PLW01	standard	wall	switch	-	$10

Serial	USB	converter	-	$20

Home	computer	(Linux	or	Mac	preferred)	-	$200	to	$2,000,	depending	on
model

Wireless	Bluetooth	speaker	-	$120

Android	G1	phone	-	$80	to	$150,	depending	on	its	used	condition

Android	smartphone	-	$50	to	$200,	depending	on	features	and	carrier
contract

Sparkfun	IOIO	board	with	JST	connector,	barrel	jack	to	2-pin	JST
connector,	and	5VDC	power	supply	-	$60

Male	USB	to	male	mini-USB	cable	-	$3

2.1	mm	female	barrel	jack	cable	-	$3

Spool	of	wire	(22	AWG	should	be	adequate)	-	$3

10K	ohm	resistor	-	$0.10

10M	ohm	resistor	-	$0.10

Small	breadboard	-	$4

Electrical	tape	or	heat	shrink	tubing	-	$5

9-volt	DC	power	supply	-	$7

12-volt	5A	switching	power	supply	-	$25

PowerSwitch	Tail	II	with	a	1K	resistor	and	a	4222A	NPN	transistor	-	$20

Stepper	motor	-	$14

Each	of	these	parts	is	reusable	with	the	projects	throughout	the	book.	Naturally,
if	a	particular	project	is	permanently	installed	in	your	home,	you	will	have	to
replenish	the	inventory	to	replace	the	parts	used	in	that	permanent	fixture.	Do	It
Yourself	(DIY)	hardware	project	building,	like	writing	code,	is	a	satisfyingly
addictive	experience.	As	your	confidence	grows,	so	too	will	your	expenditures
on	electrical	components.

Of	all	the	parts	used	throughout	the	book,	three	items	that	are	frequently	called
upon	are	Android	smartphones,	Arduinos,	and	XBee	radios.	I	will	give	a	brief
overview	of	each	in	the	next	sections.	If	you	intend	to	leverage	these	useful
electronics	further,	refer	to	the	Android,	Arduino,	and	XBee	titles	in	Appendix	2,
Bibliography,	for	more	information	on	these	remarkable,	transformative
technologies.

Android	Programming
The	Android	operating	system	is	continuing	its	rapid	expansion	and	domination
in	certain	telecommunications	and	embedded	systems	markets.	Google
announced	its	Android@Home	initiative	and	is	encouraging	developers	and
consumer	electronics	manufacturers	to	consider	Android	as	a	base	technology
for	smart	home	systems.	Several	electronics	vendors	have	released	hardware	that
is	compliant	with	the	Android	Open	Accessory	Development	Kit	(ADK)	and
that	takes	advantage	of	the	interfaces	Google	has	designed.[15]

The	ADK	board	I	chose	is	Sparkfun’s	IOIO	board.	ADK	support	for	the	IOIO
was	still	in	beta	at	the	time	of	this	book’s	publication,	and	loading	the	ADK-
enabled	firmware	on	the	board	is	not	a	trivial	exercise.	Chapter	9,	Android	Door
Lock,	instead	discusses	a	project	in	this	book	using	traditional	Android	SDK
calls	while	incorporating	the	custom	hardware	library	that	the	IOIO	board
currently	provides.

As	the	cost	of	ADK	developer	hardware	drops,	more	economically	viable
options	will	be	available	for	developers	and	manufacturers	alike.	But	for	now,	a
used	first-generation	Android	phone	coupled	with	an	IOIO	is	still	far	more
powerful	and	much	less	expensive	than	a	comparably	spec’d	ADK	board	with
the	same	features	(camera,	GPS,	Bluetooth,	Wi-Fi)	as	a	smartphone.	By	the	time
ADK	devices	become	cheap	and	plentiful,	you	will	be	ahead	of	the	game	by
having	working	knowledge	of	the	Android	application	development	ecosystem.

Some	Android-centric	projects	involve	building	both	a	native	client	and	a	server
application.	While	the	client	applications	could	have	been	written	in	a	device-
agnostic	web	framework	like	jQuery	Mobile,[16]	it’s	useful	to	stress	the
importance	of	native	mobile	app	development.	By	having	this	native	foundation
from	the	start,	you	will	be	able	to	more	easily	call	upon	advanced	phone
functions	that	are	inaccessible	from	a	web-based	interface.	Native	applications
also	tend	to	load	and	respond	faster	than	their	browser-based	counterparts.

While	it’s	not	necessary	to	have	prior	experience	developing	Android
applications	to	build	the	Android	programs	in	this	book,	it	will	certainly	help	to
have	some	familiarity	with	the	Android	SDK.[17]

Arduino	Programming
If	you	have	C	or	C++	coding	experience,	you	will	feel	right	at	home	with	writing
code	for	the	Arduino’s	ATMega	168/328	microcontroller.	Arduino	programs,
known	as	sketches,	are	easy	to	write	once	you	learn	the	basic	structure	of	an
Arduino	application.

Let’s	take	a	quick	look	at	the	basic	anatomy	of	an	Arduino	sketch.	It	begins	with
#include	statements	at	the	head	of	the	sketch	import	code	libraries,	just	as	they	are

in	C	programs.	This	is	followed	by	global	variable	and	object	initializations	that
are	usually	referenced	in	the	sketch’s	setup()	routine.	The	setup()	function	is
typically	used	to	reference	physical	wiring	connection	points,	known	as	“pins”
on	the	Arduino	board,	along	with	the	global	variable	assignments	made	in	the
initialization	section.	An	example	of	this	assignment	might	be	something	like	int
onboard_led	=	13;	before	setup().	This	code	instructs	the	Arduino	to	use	pin	13	(the
location	of	its	onboard	LED)	to	be	accessible	in	the	sketch.	We	can	then	assign
the	pin	for	output	with	the	line	pinMode(onboard_led,	OUTPUT)	within	the	setup()
routine.

After	the	variable	assignment	and	setup()	program	initializations	are	established,
sketches	enter	the	main	loop()	routine	that	infinitely	iterates	over	the	instructions
contained	within	it.	It	is	here	that	the	sketch	waits	for	some	event	to	occur	or
repeats	a	defined	action.	We	will	revisit	this	structure	and	the	process	of	writing,
compiling,	and	running	Arduino	programs	again	in	our	first	project,	the	Chapter
3,	Water	Level	Notifier.

Any	text	editing	program	can	be	used	to	write	sketches,	with	the	most	popular
being	the	free	Arduino	Integrated	Development	Environment	(IDE)	available	for
download	from	the	Arduino	website.	This	Java-based	coding	environment
incorporates	everything	you	need	to	compile	your	sketches	into	machine-
friendly	ATMega	microcontroller	instructions.	It	also	comes	bundled	with
dozens	of	sample	sketches	to	help	you	quickly	learn	the	syntax	and	realize	the
number	of	different	sensors	and	motors	that	the	Arduino	can	interact	with.	And
because	it	is	based	on	Java,	the	Arduino	IDE	will	run	identically	on	Windows,
Mac,	and	Linux	computers.

Joe	asks:

Does	the	Arduino	IDE	Have	a	Virtual	Emulator?

Unlike	most	desktop	and	mobile	application	development,	no	official	Arduino	emulator	exists.	It’s
difficult	to	simulate	all	the	different	physical	sensors	and	motors	that	the	Arduino	can	be	connected	to.
Several	third-party	attempts	have	been	made	to	create	such	a	tool,	but	they	are	either	limited	in	the
operating	systems	they	support	or	focus	on	the	ATMega	chip	and	not	the	full	Arduino	package.	Two
Windows-based	emulators	are	Virtual	Breadboard	and	Emulare,[18]	with	Virtual	Breadboard	being
the	one	I	recommend	due	to	its	virtual	representation	of	Arduino	hardware.	Virtual	Breadboard	also

provides	a	limited	set	of	emulated	sensors	and	other	devices	that	connect	to	the	onscreen	Arduino.

Given	the	low	cost	of	the	Arduino	itself,	few	find	much	use	for	an	emulator	other	than	for	unit	testing
and	convenient,	portable	virtual	hardware	reasons.	Spend	the	money	for	an	actual	board	rather	than
messing	around	with	the	emulators.	Sketches	are	short,	and	the	serial	window	in	the	Arduino	IDE	is
helpful	enough	to	offer	detail	to	adequately	debug	and	tweak	real-live	hardware.

XBee	Programming
Another	key	technology	we	will	be	using	in	several	of	the	projects	is	a	radio
device	based	on	the	IEEE	802.15.4	wireless	specification,	commonly	known	as
XBee.	XBee	radios	are	ideal	for	Arduino-based	wireless	projects	due	to	their
low-cost,	low-power,	and	easy-to-use	serial	interface	communication.	Low-
powered	XBees	are	used	mainly	for	character-level	bitstream	communications.
Broadcast	distances	between	radios	are	roughly	within	a	fifteen-meter	(50-foot)
radius.

The	projects	in	this	book	that	incorporate	XBee-to-XBee	communications	use
single	characters	or	short	strings	to	announce	a	state	change	as	a	result	of	a
sensor	event.	Such	changes	are	then	broadcast	wirelessly	to	a	paired	XBee
modem	that	is	usually	attached	to	a	computer	or	embedded	system	that	processes
the	received	signal.	I	prefer	to	log	this	data	before	acting	upon	it	to	store	events
and	help	with	debugging.	After	logging	the	received	data,	the	computer	may	also
further	propagate	the	signal	by	translating	it	into	a	web	service-friendly	payload,
an	email	message,	a	servo	motor	movement,	or	any	other	call	to	action.

The	most	time-consuming	and	challenging	aspect	of	using	XBees	is	correctly
assembling	the	hardware	and	pairing	the	radios.	It	is	not	a	trivial	procedure,	but
it	is	also	not	too	difficult	either.	Fortunately,	Limor	“Ladyada”	Fried,	founder	of
Adafruit	Industries	and	open	hardware	electrical	engineer	extraordinaire,	has
posted	a	terrifically	helpful	tutorial	on	her	website	that	provides	detailed,	step-
by-step	instructions	on	assembling	XBee	adapter	kits	sold	along	with	the	XBee
radio	modules.	We	will	explore	this	further	when	we	use	XBees	for	the	first	time
in	the	Chapter	5,	Tweeting	Bird	Feeder	project.

Incidentally,	Digi	International,	the	company	who	manufacturers	the	XBee

hardware,	recently	announced	a	802.11	b/g/n	Wi-Fi--capable	XBee	that	obviates
the	need	for	a	second	XBee	connected	via	an	FTDI	cable	for	the	receiving	PC.
However,	the	cost	for	this	convenience	is	considerably	more	than	the
configuration	I	used	in	the	book.	If	you’re	interested	in	this	more	convenient
approach,	check	out	the	XBee	Wi-Fi	page	on	Digi’s	website.[19]

A	number	of	books	(such	as	Building	Wireless	Sensor	Networks	[Fal10])	and
online	resources	go	into	greater	detail	on	learning	basic	electronics,	Arduino
programming,	and	wireless	networking.	This	section	simply	provided	an
overview	of	how	to	work	with	the	specific	hardware	we	will	use	in	this	book’s
projects.	In	the	next	section,	we	will	take	a	quick	survey	of	the	software	we	will
use	to	bring	the	assembled	hardware	to	life.

2.2	Knowing	the	Software
In	addition	to	being	familiar	with	the	C/C++	syntax	used	for	programming
Arduino	sketches,	you	will	be	able	to	follow	along	easier	if	you	are	familiar	with
the	Java,	Ruby,	and	Python	languages.	Ruby	on	Rails	experience	is	also	a	plus.	If
you	are	unfamiliar	with	these,	review	Appendix	2,	Bibliography,	for	several
titles	that	do	a	great	job	of	teaching	these	languages	and	frameworks.

Even	if	you	don’t	know	much	about	these	languages,	you	should	be	able	to	build
and	execute	the	code	for	these	projects	with	little	or	no	modification	on	a	Linux
or	Macintosh	computer.	Windows	users	will	need	to	install	their	preferred
Python	and	Ruby	distributions	as	well	as	the	Java	runtime,	and	some	of	the
utilities	used	in	this	book	that	were	written	for	Unix-based	operating	systems
might	not	have	a	Windows	version	available.	A	PC	can	be	loaded	with	your
preferred	Linux	distribution,	and	a	Mac	Mini	will	be	more	than	adequate	for	the
OS	X	crowd.	This	home	server	should	be	a	reasonably	inexpensive	component
in	the	Programming	Your	Home	hardware	collection.

Java	familiarity	will	come	in	handy	when	writing	the	Android	client	and	server
applications	later	in	the	book.	Experience	with	Python	and	Ruby	is	also	a	plus.
Python	also	comes	preinstalled	on	Mac	and	on	nearly	all	Linux	distributions.	As
such,	a	majority	of	server-side	scripts	in	this	book	are	Python-based.	Java,	Perl,
PHP,	or	Ruby	developers	intent	on	staying	pure	to	their	favorite	technology
shouldn’t	have	too	difficult	a	time	porting	the	project’s	server-side	applications
to	their	language	of	choice.	I	encourage	any	readers	interested	in	porting	the
book’s	code	to	a	different	language	to	share	their	work	with	other	readers	via	the
book’s	website.

2.3	Be	Safe,	Have	Fun!
I	deliberately	designed	the	projects	in	this	book	to	have	little	or	no	chance	of
electrical	shock	or	damage	to	persons	or	property	should	something	unexpected
occur.	It	should	go	without	saying	that	you	should	always	employ	safe	practices
when	assembling	any	hardware	project.

Proceed	at	Your	Own	Risk.	You	Have	Been	Warned!
Your	safety	is	your	own	responsibility.	Use	of	the	instructions	and	suggestions	in
this	book	is	entirely	at	your	own	risk.	The	author	and	the	Pragmatic
Programmers,	LLC,	disclaim	all	responsibility	and	liability	for	any	resulting
damage,	injury,	or	expense	as	a	result	of	your	use	or	misuse	of	this	information.

It	is	your	responsibility	to	make	sure	that	your	activities	comply	with	all
applicable	laws,	regulations,	and	licenses.	The	laws	and	limitations	imposed	by
manufacturers	and	content	owners	are	constantly	changing,	as	are	products	and
technology.	As	a	result,	some	of	the	projects	detailed	here	may	not	work	as
described	or	may	be	inconsistent	with	current	laws,	regulations,	licenses,	or	user
agreements,	and	they	may	even	damage	or	adversely	affect	equipment	or	other
property.

Power	tools,	electricity,	and	other	resources	used	for	these	projects	are
dangerous	unless	used	properly	and	with	adequate	precautions,	including	proper
safety	gear	(note	that	not	all	photos	or	descriptions	depict	proper	safety
precautions,	equipment,	or	methods	of	use.)	You	need	to	know	how	to	use	such
tools	correctly	and	safely.	It	is	your	responsibility	to	determine	whether	you	have
adequate	skill	and	experience	to	attempt	any	of	the	projects	described	or
suggested	here.	These	projects	are	not	intended	for	use	by	children.

Make	sure	you	are	comfortable	with	any	risks	associated	with	a	project	before
starting	that	project.	For	example,	if	the	idea	of	dealing	with	110V	power	worries
you,	then	don’t	do	the	projects	that	use	it,	and	so	on.	We	also	don’t	know	about
any	local	ordinances	that	might	apply	to	you,	so	before	you	go	wiring	stuff	in,
you	should	check	your	building	codes.	If	in	doubt,	have	a	chat	with	a	local
professional.

Only	build	these	projects	if	you	agree	that	you	do	so	at	your	own	risk.

Good	luck,	and	have	fun!

In	addition	to	the	book’s	disclaimers	that	I	as	the	author	and	The	Pragmatic
Bookshelf	as	the	publisher	cannot	be	held	liable	for	any	damages	of	any	kind	as
a	consequence	of	building	and	powering	these	projects	(as	well	as	be	held	liable
in	any	way	for	hardware	you	use	or	modify	for	these	projects—for	specific
details,	see		Proceed	at	Your	Own	Risk.	You	Have	Been	Warned!),	I	cannot	stress
this	highly	enough:	unless	you	are	a	certified	electrician,	plumber,	or	carpenter
and	know	exactly	what	you’re	doing	at	all	times,	don’t	start	poking	around	and
tampering	with	the	basic	infrastructures	found	in	the	home.	Call	upon	the
experience	of	professional,	certified	electricians	when	wiring	for	the	home.	Trust
me.	The	up-front	planning	and	outside	expertise	will	deter	aggravation,	save	you
money,	and	protect	you	from	physical	harm.	Leaving	these	foundational	aspects
to	the	professionals	will	leave	you	with	more	time	to	implement	and	optimize
your	ultra-cool	and	envy-invoking	smart	home	creations.

OK,	enough	with	the	requirements	and	disclaimers.	Let’s	dive	into	the	next
section,	where	we	will	finally	get	to	assemble	and	code	some	really	nifty	and
unique	home	automation	projects!

Footnotes

[13] http://arduino.cc/

[14] http://www.adafruit.com	and	http://www.sparkfun.com,	respectively.

[15] http://developer.android.com/guide/topics/usb/adk.html

[16] http://jquerymobile.com/

[17] http://developer.android.com/sdk

[18]
http://www.virtualbreadboard.net	and	http://emulare.sourceforge.net/,
respectively.

[19] http://www.digi.com/xbeewifi

http://arduino.cc/
http://www.adafruit.com
http://www.sparkfun.com
http://developer.android.com/guide/topics/usb/adk.html
http://jquerymobile.com/
http://developer.android.com/sdk
http://www.virtualbreadboard.net
http://emulare.sourceforge.net/
http://www.digi.com/xbeewifi

Copyright	©	2012,	The	Pragmatic	Bookshelf.

Part	2	
Projects

Chapter	3

Water	Level	Notifier
If	you	live	in	the	midwestern	part	of	the	United	States	like	I	do,	you	know	all
about	heavy	rains	and	the	effects	they	can	have	on	a	basement.	Stories	of	sump
pumps	failing	during	torrential	downpours	are	often	punctuated	with	“Had	I	only
known	how	quickly	the	water	level	in	my	sump	pit	was	rising,	I	would	have	had
more	time	to	move	my	stored	items	out	of	the	way.”

Imagine	another	scenario,	where	someone	needs	to	use	a	dehumidifier	to	remove
dampness	in	a	cellar.	Inexpensive	dehumidifiers	often	stop	working	when	water
reaches	a	certain	height	in	the	condensation	bucket.	Some	models	may	include
an	audible	alarm	or	flashing	light	when	this	shutdown	occurs,	but	such	alerts	are
ineffective	because	the	dehumidifier	is	typically	installed	in	an	infrequently
visited	area.

Wouldn’t	it	be	more	convenient	to	receive	an	email	from	your	house	when	the
water	levels	in	these	containment	areas	exceed	a	certain	threshold,	alerting	you
to	take	action?	(See	Figure	1,	Have	your	house	email	you.)	Let’s	get	our	feet	wet,
so	to	speak,	and	build	a	system	that	will	provide	this	helpful	notification	service.

Figure	1.	Have	your	house	email	you	...when	water	levels	rise
precipitously	to	give	you	enough	time	to	prevent	flood	damage.	This
project	can	also	be	used	to	monitor	water	levels	in	dehumidifiers,	air

conditioners,	and	similar	devices.

3.1	What	You	Need
The	main	component	required	to	make	this	project	work	is	something	called	a
flex	sensor.	The	buoyancy	of	rising	water	levels	will	bend	the	sensor.	As	the
sensor	bends	one	way	or	the	other,	current	values	will	increase	or	decrease
accordingly.	The	sensor’s	position	can	be	read	with	a	simple	Arduino	program
and	can	be	powered	via	either	the	Arduino’s	3.3	or	5.0	volt	pins.

Figure	2.	Water	Level	Notifier	parts

Here’s	the	complete	list	(refer	to	the	photo	in	Figure	2,	Water	Level	Notifier
parts):

1.	 An	Arduino	Uno

2.	 An	Ethernet	shield[20]

3.	 A	flex	sensor[21]

4.	 A	10k	ohm	resistor[22]

5.	 A	1-inch	fishing	bobber

6.	 Three	wires	(power,	ground,	and	analog	pin	0)	trimmed	to	desired	length

7.	 A	9-volt	power	supply	to	power	the	Arduino	and	Ethernet	shield	once
untethered	from	the	USB	cable

8.	 A	pole	or	wood	plank	to	attach	and	hang	the	flex	resistor	from

9.	 A	web	server	running	PHP	4.3	or	higher	(not	pictured)

You	will	also	need	a	standard	A-B	USB	cable	(not	pictured)	to	connect	the
Arduino	to	the	computer	and	an	Ethernet	cable	(also	not	pictured)	to	connect	the
Ethernet	shield	to	your	network.

We	will	be	reusing	the	Arduino	and	Ethernet	shield	again	in	several	other
projects,	so—not	including	the	cost	of	these	two	items—the	remaining	hardware
expenses	should	be	under	twenty	dollars.	Considering	the	peace	of	mind	and	the
ease	with	which	you	can	build	further	ideas	upon	this	concept,	this	is	money
well	spent.

Arduino	Ethernet
Would	you	prefer	a	board	that	combines	the	Arduino	Uno	and	the	Arduino
Ethernet	shield	into	a	single	package?	The	Arduino	Uno	Ethernet	may	be	what
you’re	looking	for.[23]	However,	the	board	still	needs	to	reserve	digital	pins	10
through	13	for	the	Ethernet	module,	just	like	the	separate	Ethernet	shield	does.
The	Arduino	Uno	Ethernet	also	requires	an	FTDI	cable	to	interface	with	a
computer	rather	than	the	more	popular	A-B	USB	cable.[24]	The	biggest
advantage	that	this	board	has	to	offer	is	the	ability	to	combine	Ethernet	services
with	another	Arduino	shield,	assuming	that	shield	does	not	require	the	same	pin
resources	that	the	Ethernet	hardware	requires.

3.2	Building	the	Solution
Before	the	Water	Level	Notifier	can	start	broadcasting	alerts,	we	need	to
complete	the	following	tasks:

1.	 Attach	wires	and	a	resistor	to	the	exposed	sensor	leads	on	one	end	of	the
flex	resistor	and	the	fishing	bobber	on	its	other	end.

2.	 Connect	the	leads	of	the	flex	sensor	to	an	analog	pin	of	an	Arduino.

3.	 Write	a	program	(i.e.,	sketch)	for	the	Arduino	that	will	monitor	changes	in
the	flex	sensor	readings.	It	should	trigger	an	event	when	a	large-enough
deviation	from	the	initial	value	is	detected.

4.	 Attach	an	Ethernet	shield	to	the	Arduino	so	that	the	sketch	can
communicate	with	a	web	server	running	PHP.

5.	 Write	a	PHP	script	that	will	capture	incoming	values	from	the	Arduino.
When	the	water	level	has	changed,	it	should	format	a	message	and	send	an
email	alert	to	the	intended	recipient,	who	will	need	to	react	quickly	to	the
alert!

We	will	begin	by	assembling	the	hardware	and	testing	out	the	flex	sensor
measurements.

3.3	Hooking	It	Up
Let’s	start	by	making	sure	our	flex	sensor	works	the	way	we	intend	it	to.	Connect
the	positive	lead	of	the	sensor	to	the	Arduino’s	5.0-volt	pin	using	a	wire.	When
looking	at	the	flex	sensor	standing	on	its	end,	the	positive	lead	is	the	trace	that
runs	vertically.	The	negative	lead	is	the	one	that	looks	like	the	rungs	of	a	ladder.
Connect	the	negative	lead	to	the	analog	0	pin	with	another	wire.	Lastly,	bridge
the	analog	0	pin	to	the	ground	pin	using	the	10k	ohm	resistor	to	dampen	the	flow
of	current	through	the	circuit.	Refer	to	Figure	3,	Water	Level	Notifier	wiring
diagram,	to	make	sure	you	attach	the	wires	and	resistor	to	the	correct	pins.

Attach	the	bobber	to	the	end	of	the	flex	sensor.	Most	bobbers	come	with	a
retractable	hook	that	can	be	fastened	to	the	plastic	tip	of	the	sensor.	If	the	bobber
doesn’t	stay	affixed	to	the	sensor,	you	can	also	use	hot	glue	or	heat	shrink	tubing
to	help	keep	the	bobber	attached.	Just	be	careful	not	to	damage	the	sensor	when
heating	it	with	these	affixing	solutions.	You	can	also	try	duct	tape	as	a	safe
alternative,	though	the	tape	may	lose	its	grip	over	time.

Use	plenty	of	wire	so	you	have	enough	length	to	safely	mount	the	Arduino	and
power	source	far	away	from	the	water	source.	The	Arduino	that	I	have
monitoring	my	sump	pit	is	sitting	in	a	hobby	box	mounted	on	the	wall	several
feel	above	the	sump	pit,	and	the	two	wires	attached	to	the	flex	resistor	are	about
two	meters	(roughly	six	feet)	in	length.

Figure	3.	Water	Level	Notifier	wiring	diagram

Now	that	the	Arduino	has	been	wired	up,	we	can	work	on	the	logic	of	what	the
hardware	is	supposed	to	do	for	us.	We	will	begin	with	a	quick	test	program	that
will	verify	that	the	flex	sensor	is	connected	correctly	and	working	properly.

3.4	Sketching	Things	Out
Before	we	start	writing	code,	we	first	need	to	make	sure	we	can	communicate
with	the	Arduino.	Then	we	will	learn	how	to	collect	and	act	upon	data	sent	by
the	flex	sensor	with	a	program	(what	the	Arduino	community	prefers	to	call	a
sketch).

The	first	sketch	we	write	will	detect	when	the	flex	resistor	values	have	changed.
If	the	change	is	large	enough	(in	other	words,	if	water	is	making	the	resistor
bend),	we	will	transmit	a	request	to	a	PHP	server	that	will	process	the	request.
That	server	will	then	send	out	an	email	notifying	us	of	the	change.

We	will	build	the	sketch	incrementally,	first	by	connecting	the	flex	sensor	to	the
Arduino	and	collecting	values	when	the	sensor	is	straight	and	then	when	it	bends
in	both	directions.	Once	these	values	have	been	identified,	we	will	write
conditional	statements	that	will	call	functions	to	send	HTTP	GET	statements
containing	data	we	will	include	in	the	email	alert.

Configuring	an	Arduino
We	will	use	the	Arduino	IDE	to	write,	compile,	and	download	our	code	into	the
Arduino.	For	those	who	would	like	a	more	comprehensive	introduction	to
Arduino	programming,	read	Maik	Schmidt’s	excellent	Arduino:	A	Quick	Start
Guide	[Sch11].

If	you	are	already	familiar	with	the	Arduino	or	are	willing	to	hang	on	for	the
ride,	let’s	get	started	by	launching	the	Arduino	IDE.	Check	to	ensure	that	your
Arduino	is	connected	via	USB	cable	and	recognized	and	selected	accordingly	on
one	of	the	serial	ports	identified	by	the	Arduino	IDE’s	Tools→Serial	Port	menu.
You	can	perform	a	quick	test	of	your	configuration	with	the	LED	Blink	example
program	located	in	the	Arduino	IDE’s	File→Examples→1.Basics→Blink	menu.
Upload	it	to	the	attached	Arduino	and	check	to	see	that	it	executes	correctly.

If	it	fails	to	do	so,	first	verify	that	the	Arduino	is	correctly	plugged	into	the
computer	and	powered	by	the	USB.	If	it	is,	check	next	to	be	sure	you’ve	selected

the	correct	serial	port	in	the	Arduino	IDE	and	highlighted	the	right	type	of
Arduino	board	in	the	Tools→Board.	A	few	correctly	placed	mouse	clicks	on
either	of	these	settings	usually	fixes	the	problem.

The	Flex	Sensor	Sketch
Now	that	the	Arduino	is	connected	and	tested,	we	can	write	a	sketch	that	will
validate	and	interpret	the	bending	of	the	flex	sensor.	We	will	begin	by	defining	a
few	constants	that	we	will	refer	to	in	the	program.

Since	we	have	to	account	for	the	sensor	bending	in	either	direction,	we	will
define	two	named	constants	that	will	be	used	to	set	the	upper	and	lower
threshold	limits.

We	place	these	constants	at	the	beginning	of	the	sketch	so	they’re	easier	to	locate
in	case	we	need	to	edit	these	values	later	on.	By	convention,	defined	constants
are	also	all	uppercase	so	that	they	are	easier	to	identify	in	the	code.	Let’s	call
them	FLEX_TOO_HI	and	FLEX_TOO_LOW.	The	range	between	these	upper	and	lower
limits	will	depend	on	the	degree	of	flex	that	is	optimal	for	your	own	scenario.	I
prefer	a	variance	of	plus	or	minus	five	units	to	allow	a	minor	amount	of	bend
before	the	notification	event	is	triggered.	Having	such	a	range	will	allow	us	to
account	for	minor	environmental	effects	like	a	light	breeze	or	a	low-grade
vibration.

We	also	need	to	account	for	the	Arduino’s	onboard	LED	and	the	analog	pin	that
the	flex	sensor	is	attached	to.

FLEX_TOO_HIGH	is	the	value	of	the	assigned	analog	pin	when	the	flex	sensor	is
bent	forward	past	this	threshold.

FLEX_TOO_LOW	is	the	value	of	the	assigned	analog	pin	when	the	flex	sensor	is
bent	backward	past	this	threshold.

ONBOARD_LED	is	assigned	to	the	Arduino’s	onboard	LED	located	at	pin	13.
We	will	use	it	provide	us	with	a	visual	indicator	when	the	flex	resistor	has
deviated	far	enough	to	send	an	alert.	This	allows	us	to	use	the	Arduino’s

onboard	LED	as	a	kind	of	visual	debugger	so	that	we	can	visually	confirm
that	the	flex	events	are	being	detected.

FLEX_SENSOR	is	connected	to	the	analog	pin	on	the	Arduino	that	the	flex
resistor	is	connected	to.	In	this	case,	that	value	is	0	because	the	resistor	is
connected	to	pin	0.

These	constants	will	be	defined	at	the	beginning	of	the	sketch.

WaterLevelNotifier/WaterLevelSensor.pde
	 #define	FLEX_TOO_HI			475

	 #define	FLEX_TOO_LOW		465

	 #define	ONBOARD_LED				13

	 #define	FLEX_SENSOR					0

Now	we	will	create	two	variables	to	capture	the	changing	value	and	state	of	the
flex	resistor	and	set	their	initial	values	to	zero.

bend_value	will	store	the	changing	analog	values	of	the	flex	resistor	as	it
bends.

bend_state	is	the	binary	condition	of	the	flex	sensor.	If	it’s	straight,	its	value
is	equal	to	zero.	If	the	flex	resistor	deviates	either	direction,	we	will	set	its
state	to	one.

These	variables	will	follow	after	the	define	statements	we	wrote	earlier.

WaterLevelNotifier/WaterLevelSensor.pde
	 int	bend_value		=	0;

	 byte	bend_state	=	0;

With	the	constants	defined	and	the	variables	initialized,	we	need	to	set	up	the
serial	port	to	monitor	the	continuous	stream	of	values	being	polled	in	the	main
program’s	loop.	The	onboard	LED	also	has	to	be	configured	so	we	can	see	it	turn
on	and	off	based	on	the	bend_state	of	the	flex	resistor.

WaterLevelNotifier/WaterLevelSensor.pde
	 void	setup()

http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelSensor.pde
http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelSensor.pde
http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelSensor.pde

	 {

	 				//	for	serial	window	debugging

	 				Serial.begin(9600);

	 				//	set	pin	for	onboard	led

	 				pinMode(ONBOARD_LED,	OUTPUT);

	 }

With	the	upper	and	lower	flex	bending	limits	defined,	we	need	a	routine	that	will
check	to	see	if	these	limits	have	been	exceeded.	If	they	have,	we	will	turn	on	the
Arduino’s	onboard	LED.	When	the	flex	resistor	returns	to	its	resting	straight
position,	we	will	turn	the	LED	off.

WaterLevelNotifier/WaterLevelSensor.pde
	 void	SendWaterAlert(int	bend_value,	int	bend_state)

	 {

	 				digitalWrite(ONBOARD_LED,	bend_state	?	HIGH	:	LOW);

	 				if	(bend_state)

	 								Serial.print("Water	Level	Threshold	Exceeded,	bend_value=");

	 				else

	 								Serial.print("Water	Level	Returned	To	Normal	bend_value=");

	 				Serial.println(bend_value);

	 }

Note	the	first	line	of	this	code	block:	digitalWrite(ONBOARD_LED,	bend_state	?	HIGH	:

LOW);.	This	ternary	operation	polls	the	current	state	of	the	flex	resistor	based	on
the	value	(0	or	1)	that	we	passed	to	the	function.	The	conditional	statement	that
follows	prints	out	an	appropriate	message	to	the	Arduino	IDE’s	serial	window.	If
the	bend_state	is	true	(HIGH),	the	flex	resistor	has	been	bent	past	the	limits	we
defined.	In	other	words,	water	has	exceeded	the	threshold.	If	it’s	false	(LOW),
the	flex	resistor	is	straight	(i.e.,	the	water	level	is	not	rising).

All	that	is	left	to	write	is	the	program’s	main	loop.	Poll	the	FLEX_SENSOR	pin
(currently	defined	as	analog	pin	0)	every	second	for	any	increase	or	decrease	in
value.	When	a	flex	event	is	detected,	print	the	bend_value	to	the	serial	port	so	we
can	see	it	displayed	in	the	Arduino	IDE’s	serial	window.

WaterLevelNotifier/WaterLevelSensor.pde
	 void	loop()

	 {

http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelSensor.pde
http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelSensor.pde

	 				//	wait	a	second	each	loop	iteration

	 				delay(1000);

	 				//	poll	FLEX_SENSOR	voltage

	 				bend_value	=	analogRead(FLEX_SENSOR);

	
	 								//	print	bend_value	to	the	serial	port	for	baseline	measurement

	 								//	comment	this	out	once	baseline,	upper	and	lower	threshold

	 								//	limits	have	been	defined

	 				Serial.print("bend_value=");

	 				Serial.println(bend_value);

	
	 				switch	(bend_state)

	 				{

	 				case	0:	//	bend_value	does	not	exceed	high	or	low	values

	 								if	(bend_value	>=	FLEX_TOO_HI	||	bend_value	<=	FLEX_TOO_LOW)

	 								{

	 												bend_state	=	1;

	 												SendWaterAlert(bend_value,	bend_state);

	 								}

	 								break;

	 				case	1:	//	bend_value	exceeds	high	or	low	values

	 								if	(bend_value	<	FLEX_TOO_HI	&&	bend_value	>	FLEX_TOO_LOW)

	 								{

	 												bend_state	=	0;

	 												SendWaterAlert(bend_value,	bend_state);

	 								}

	 								break;

	 				}

	 }

The	main	loop	of	the	sketch	will	poll	the	value	of	the	flex	resistor	every	second.
A	switch	statement	tests	the	condition	of	the	flex	resistor.	If	its	last	status	was
straight	(case	0:),	check	to	see	if	it	has	since	bent	beyond	the	upper	and	lower
threshold	limits.	If	so,	set	the	bend_state	accordingly	and	call	the	SendWaterAlert

function.	Conversely,	if	the	resistor’s	last	status	was	bent	(case	1:),	check	to	see	if
it’s	now	straight.	If	it	is,	set	the	bend_state	variable	to	zero	and	pass	that	new	state
to	the	SendWaterAlert	function.

Depending	on	the	type	of	flex	sensor	and	Ethernet	shield	used	along	with	the
voltage	pin	selected,	your	baseline	value	may	be	different	from	the	baseline	one
I	recorded.	My	flex	sensor	reported	a	value	of	470.

Note	the	use	of	semicolons	to	mark	the	end	of	a	line	of	instruction	and	brackets
to	identify	conditional	blocks.	Save	the	file.	It’s	also	a	good	idea	to	place	this
and	all	other	code	you	write	under	your	preferred	choice	of	version	control
before	proceeding.	I	recommend	Git,[25]	but	others	like	Mercurial	and
Subversion	are	certainly	better	than	any	non--version	controlled	alternative.

Later	on,	we	will	ask	the	SendWaterAlert	function	to	call	another	function	that	will
connect	to	a	designated	PHP	server.	This	in	turn	will	send	an	email	alert	that	will
contain	the	appropriate	alert	and	the	bend_value	being	monitored.	But	before	we
do,	we	will	verify	that	our	threshold	test	is	working	by	monitoring	the	messages
sent	to	the	Arduino	IDE’s	serial	window.

Run	the	Sketch
Save	and	click	the	Verify	button	in	the	Arduino	IDE’s	toolbar.	This	will	compile
the	sketch	to	check	for	any	syntax	errors.	After	confirming	that	there	are	none,
send	the	sketch	to	the	Arduino	by	clicking	the	Upload	button	on	the	toolbar.	You
should	see	the	Arduino’s	onboard	LED	flash	a	few	times,	indicating	that	it	is
receiving	the	sketch.	When	the	rapid	flashing	stops,	the	sketch	should	be
running.

Open	up	the	Arduino	IDE’s	Serial	Monitor	window.	Assuming	you	haven’t	yet
commented	out	the	Serial.print("bend_value=");	statement	in	the	main	loop	of	the
sketch,	observe	the	numbers	that	are	continuously	scrolling	upward	at	a	rate	of
roughly	once	a	second	on	the	serial	monitor’s	display.	If	the	characters	being
displayed	in	the	window	look	like	gibberish,	make	sure	to	select	the	correct	baud
rate	(in	this	case,	9600)	in	the	serial	monitor’s	drop-down	list	located	in	the
lower	right	corner	of	the	serial	monitor	window.	Take	note	of	the	values	of	the
flex	resistor	when	it	is	straight,	bent	forward,	and	backward.

Depending	on	the	amount	of	electrical	resistance	and	the	type	of	hardware	being
used,	update	the	FLEX_TOO_HIGH	and	FLEX_TOO_LOW	constants	to	better	calibrate
them	to	the	changing	values	you	are	seeing	in	the	serial	window.	Once	these
defined	amounts	have	been	entered,	save	the	program	and	upload	again	to	the
Arduino,	performing	the	same	procedure	as	before.	It	may	take	two	or	three	tries

to	narrow	in	on	the	high	and	low	values	that	help	determine	the	bend	state	of	the
flex	resistor.

With	the	modified	upper	and	lower	limits	set	to	best	suit	your	particular
configuration,	observe	the	Arduino’s	onboard	LED	to	ensure	that	it	lights	up
when	the	flex	resistor	bends	far	enough	forward	or	backward	and	turns	off	when
the	resistor	is	straightened	back	to	its	original	position.

Testing	the	Sketch
When	you	are	confident	that	the	hardware	setup	and	the	uploaded	Arduino
sketch	are	behaving	correctly,	it’s	time	to	try	a	simple	water	test	by	filling	up	a
bowl	with	water	and	dipping	the	bobber	into	the	water	while	holding	the	base	of
the	flex	resistor	between	your	thumb	and	forefinger.	As	an	extra	precaution,
wrap	any	exposed	solder	connecting	the	two	wires	to	the	flex	resistor	in
waterproof	electrical	tape.	I	suggest	wrapping	the	tape	several	layers	thick,	both
to	have	a	solid	base	to	hold	the	resistor	as	well	as	to	protect	it	from	any	errant
drops	of	water	that	may	accidentally	splash	or	spill.

After	properly	and	safely	setting	up	the	test,	verify	that	as	the	buoyancy	of	the
water	deflects	the	bobber	attached	to	the	flex	resistor,	the	resistor	bends	far
enough	in	either	direction	to	turn	the	LED	light	on.

Be	careful	not	to	submerge	the	exposed	flex	resistor.	While	the	amount	of
current	flowing	through	the	Arduino	is	relatively	low,	water	and	electricity	can
make	for	a	deadly	combination.	Place	any	electronics,	including	the	flex	resistor
and	attached	bobber,	in	a	sealed	plastic	bag	with	enough	room	to	allow	the	flex
resistor	to	bend.	Use	a	high	degree	of	caution	to	make	absolutely	sure	to	not	get
any	of	the	exposed	wiring	or	electrical	connections	wet.	Doing	so	could	damage
your	equipment	or,	even	worse,	you.

The	base	functionality	of	the	water	level	notifier	is	complete.	However,	its
method	of	communicating	a	rise	in	water	height	is	limited	to	a	tiny	LED	on	the
Arduino	board.	While	that	may	be	fine	for	science	projects	and	people	who	work
right	next	to	the	Arduino	monitoring	the	water	source	in	question,	it	needs	to
broadcast	its	alert	beyond	simple	light	illumination.

Receiving	an	email	notification	makes	more	sense,	especially	when	the	location
of	water	measurement	is	somewhere	in	the	home	that	is	not	frequently	visited.
Perhaps	the	detector	will	even	operate	at	a	remote	location,	such	as	when
monitoring	the	status	of	a	sump	pit	at	a	vacation	home	after	a	heavy	rain.

To	do	so,	we	will	need	to	clip	on	an	Ethernet	shield	to	the	Arduino	and	write
some	code	to	send	an	email	when	the	bend	threshold	is	crossed.	But	before	we
add	more	hardware	to	this	project,	we	first	need	to	set	up	a	web-based	email
notification	application	that	our	Arduino	sketch	can	call	upon	when	it	needs	to
send	out	an	alert.

3.5	Writing	the	Web	Mailer
Libraries	for	sending	email	directly	from	the	Arduino	abound.	But	these	all	rely
on	a	stand-alone,	dedicated	email	server	providing	the	mail	gateway.	So	even
though	the	mailer	code	can	be	compiled	into	the	Arduino	sketch,	the	solution
still	relies	on	an	intermediary	to	send	messages	from	the	Arduino	to	the	email
inbox	of	the	intended	recipient(s).

If	you	have	access	to	an	SMTP	mail	server	that	you	can	connect	to	for	outbound
message	transmission,	check	out	Maik	Schmidt’s	Arduino:	A	Quick	Start
Guide	[Sch11].	His	book	supplies	the	necessary	code	and	walkthrough	on	how	to
make	this	work.	If	you	don’t	have	access	to	a	dedicated	SMTP	gateway,	we	can
use	an	Internet	web	hosting	service	that	supports	sending	email	from	a	PHP
script.

Why	Use	a	PHP-Enabled	Web	Server	for	This	Project?
Quite	simply,	because	they	are	the	most	prevalent	web-hosting	server
configurations.	While	I	personally	prefer	a	more	modern	web	application
framework	like	Django	or	Ruby	on	Rails	hosted	within	a	virtual	private	server
(VPS),	these	technologies	are	not	as	universally	supported	by	hosting	providers
compared	to	PHP.	This	wouldn’t	be	a	problem	if	we	hosted	the	web	server	within
our	own	network	(which	we	in	fact	do	in	Chapter	7,	WebEnabled	Light	Switch)	or
had	access	to	a	VPS.	But	given	the	setup	configuration	overhead	associated	with
running	both	a	web	server	and	an	email	server	that	correctly	sends	outbound
SMTP	messages,	it’s	easier	to	go	this	route	for	our	first	project.

Sending	email	via	PHP	can	be	done	with	a	single	PHP	file	in	a	single	line	of	code.
That	said,	if	you	are	interested	in	writing	functional	equivalents	for	your	personal
favorite	web	frameworks,	go	for	it!	If	you	succeed,	please	considering	sharing
your	discoveries	with	the	Programming	Your	Home	book	discussion	community.

For	this	project,	I	have	chosen	a	popular,	preconfigured	PHP-enabled	web	server
with	an	SMTP	outbound	gateway,	a	configuration	that	popular	website	hosting
companies	like	Dreamhost.net,	Godaddy.com,	and	others	offer	to	their
customers.

The	PHP	script	for	sending	email	consists	of	only	a	few	short	lines	of	code.	First,
we	will	pass	two	parameters	to	the	server:	the	type	of	alert	to	send	and	the
recorded	value	of	the	flex	resistor.	Then	we	will	compose	a	mail	message
containing	the	recipient’s	email	address,	the	subject,	and	the	message	contents.
Then	we	will	send	the	email.

WaterLevelNotifier/wateralert.php
	 <?php

	 //	Grab	the	type	of	alert	to	email	and

	 //	the	current	value	of	the	flex	resistor.

	 $alertvalue	=	$_GET["alert"];

	 $flexvalue	=	$_GET["flex"];

	
	 $contact	=	'your@emailaddress.com';

	
	 		if	($alertvalue	==	"1")	{

	 		$subject	=	"Water	Level	Alert";

	 		$message	=	"The	water	level	has	deflected	the	flex

	 														resistor	to	a	value	of	"	.	$flexvalue	.	".";

	 		mail($contact,	$subject,	$message);

	 		echo("<p>Water	Level	Alert	email	sent.</p>");

	 		}	elseif	($alertvalue	==	"0")	{

	 		$subject	=	"Water	Level	OK";

	 		$message	=	"The	water	level	is	within	acceptable	levels.

	 														Flex	resistor	value	is	"	.	$flexvalue	.	".";

	 		mail($contact,	$subject,	$message);

	 		echo("<p>Water	Level	OK	email	sent.</p>");

	 		}

	
	 ?>

The	script	calls	the	built-in	PHP	mail	function	that	passes	three	required
parameters:	recipient(s),	subject,	and	the	body	of	the	email.	Yes,	it’s	that	simple.

Save	the	code	to	a	file	called	wateralert.php	in	the	root	web	directory	of	your
PHP	server.	You	can	test	the	script	by	opening	your	web	browser	and	visiting
http://MYPHPSERVERNAME/wateralert.php?alert=1&flex=486.	The	page	should	return	a
Water	Level	Alert	email	sent.	message	in	the	browser	window,	and	a	corresponding
email	message	should	appear	in	the	defined	recipient’s	inbox.	If	it	doesn’t,	check
your	PHP	server	settings	and	make	sure	that	your	web	server	is	properly

http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/wateralert.php

configured	to	use	a	working	email	gateway.	If	you’re	still	not	having	luck	with
the	message	test,	contact	your	website	hosting	provider	to	make	sure	your	hosted
solution	is	correctly	configured	for	PHP	email	messaging.

By	abstracting	the	delivery	mechanism	from	the	logic	running	in	the	Arduino,
we	can	easily	modify	the	message	recipients	and	contents.

Securing	Your	Notifications
If	you	plan	on	having	this	PHP	script	provide	a	permanent	service	for	Arduino
message	passing,	consider	adding	a	layer	of	security	to	the	transmission	signal
so	that	only	the	Arduino	can	trigger	the	message	condition.

This	could	be	done	by	something	as	simple	(though	weak)	as	a	password	value
passed	in	the	HTTP	GET	parameters	or	by	a	more	secure	hash	transaction	that
trades	an	authentication	conversation	between	the	Arduino	and	the	web	server.
While	adding	a	good	security	routine	is	beyond	the	scope	of	this	project,	it’s	a
good	idea	to	incorporate	such	functionality	so	that	your	publicly	exposed	PHP
email	entry	point	isn’t	abused	by	unwelcome	connections.

Now	that	we	have	a	working	message	gateway,	we	can	hook	up	the	Arduino	to
an	Ethernet	shield	so	the	deflected	flex	resistor	can	talk	to	the	rest	of	the	world.

3.6	Adding	an	Ethernet	Shield
Attach	the	Ethernet	shield	to	the	Arduino	by	lining	up	the	base	pins	so	that	the
Ethernet	jack	is	on	top	and	facing	the	same	direction	as	the	Arduino	USB	jack.
Reconnect	the	wires	to	the	5V	and	analog-in	0	(A0)	pins	found	on	the	Ethernet
shield	just	like	you	did	when	these	wires	were	connected	to	the	Arduino.

Do	the	same	for	the	10k	ohm	resistor	bridging	across	the	ground	(Gnd)	and	A0
pins.	Run	your	test	again	and	check	the	values.	In	my	tests,	the	base	value	being
read	was	different	compared	to	the	Arduino	without	the	Ethernet	shield,	and
yours	will	likely	reflect	similar	results.	Since	we’re	more	interested	in	the
deviation	from	this	base	value	than	the	calibration	of	the	actual	value	itself,	it’s
important	to	use	the	unbent	resistor	value	in	the	code	and	then	determine	how	far
of	a	plus	or	minus	deflection	from	this	base	value	is	acceptable	before
transmitting	the	alert.

Now	that	our	hardware	is	network-enabled,	we	can	add	the	necessary	code	to	our
sketch	that	transmits	the	flex	sensor	status	to	our	PHP	server.

Coding	the	Shield
We	will	programmatically	send	data	via	the	Ethernet	shield.	But	we	first	must
include	a	reference	in	the	sketch	to	both	the	Arduino	Ethernet	library	and	its
dependency,	the	Serial	Peripheral	Interface	(SPI)	library.[26]	These	two	libraries
contain	the	code	needed	to	initialize	the	Ethernet	shield	and	allow	us	to	initialize
it	with	network	configuration	details.	Both	libraries	are	included	in	the	Arduino
IDE	installation,	so	the	only	thing	we	need	to	do	is	import	the	SPI.h	and	Ethernet.h
libraries	via	the	#include	statement.	Add	these	statements	at	the	beginning	of	the
sketch:

WaterLevelNotifier/WaterLevelNotifier.pde
	 #include	<SPI.h>

	 #include	<Ethernet.h>

With	the	Ethernet	library	dependency	satisfied,	we	can	assign	a	unique	Media

http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelNotifier.pde

Access	Control	(MAC)	and	IP	address	to	the	shield.	While	DHCP	libraries	are
available	from	the	Arduino	community,	it’s	easier	just	to	set	the	shield	with	a
static	IP	address.

Arduino	on	Linux	and	the	Ethernet	Library
If	you	are	using	the	Linux	version	of	the	Arduino	IDE,	you	might	encounter	a
problem	with	the	Ethernet	reference	library.	The	problem	manifests	itself	by
transmitting	garbled	broadcasts	from	the	Ethernet	shield.	Fortunately,	a	fork	of
the	Ethernet	library,	aptly	named	Ethernet2,	is	available	for	download.[27]	Refer
to	Appendix	1,	Installing	Arduino	Libraries,	for	more	details.	Once	the	Ethernet2
library	is	installed,	replace	the	broken	Ethernet.h	in	the	original	#include	statement
with	#include	Ethernet2.h	instead.

For	example,	if	your	home	network	uses	a	192.168.1.1	gateway	address,	set	the
address	of	the	shield	to	a	high	IP	address	like	192.168.1.230.	If	you	plan	on
using	this	address	as	a	persistent	static	IP,	refer	to	your	home	router’s
documentation	on	how	to	set	a	static	IP	range	within	a	DHCP-served	network.

WaterLevelNotifier/WaterLevelNotifier.pde
	 //	configure	the	Ethernet	Shield	parameters

	 byte	MAC[]	=	{	0xDE,	0xAD,	0xBE,	0xEF,	0xFE,	0xEF	};

	
	 //	replace	this	shield	IP	address	with	one	that	resides	within

	 //	your	own	network	range

	 byte	IPADDR[]		=	{	192,	168,	1,	230	};

	
	 //	replace	with	your	gateway/router	address

	 byte	GATEWAY[]	=	{	192,	168,	1,	1	};

	
	 //	replace	with	your	subnet	address

	 byte	SUBNET[]		=	{	255,	255,	255,	0	};

	
	 //	replace	this	server	IP	address	with	that	of	your	PHP	server

	 byte	PHPSVR[]	=	{???,	???,	???,	???};

	
	 //	initialize	a	Client	object	and	assign	it	to	your	PHP	server's

	 //	IP	address	connecting	over	the	standard	HTTP	port	80

	 Client	client(PHPSVR,	80);

http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelNotifier.pde

Assign	constants	for	the	static	MAC	and	IP	addresses	that	will	be	used	by	the
Ethernet	shield.	Add	the	address	of	your	Internet	router	to	the	GATEWAY	value,
and	add	your	SUBNET	value	as	well	(most	home	network	subnets	are
255.255.255.0).	The	IP	address	of	your	PHP	server	also	has	to	be	declared	prior
to	the	sketch’s	setup	routine.

Ethernet	Shield	DNS	and	DHCP
The	Ethernet	library	does	not	natively	include	any	DNS	or	DHCP	functionality.
This	capability	is	expected	to	arrive	in	an	upcoming	release	of	the	Arduino
platform.	But	until	that	day	arrives,	we	cannot	use	a	server	name	like
www.mycoolwaterlevelproject.com	for	a	web	server	address	and	must	use	the
server’s	assigned	IP	address	instead.

Thanks	to	the	efforts	of	Arduino	enthusiast	George	Kaindl,	using	DNS	and	DHCP
with	an	Ethernet	shield	is	possible.	If	you	don’t	mind	the	extra	overhead	these
libraries	add	to	the	Arduino’s	already	constrained	program	storage	capacity,
check	his	Arduino	Ethernet	libraries	for	more	details.[28]

With	the	constants	declared,	we	can	now	properly	initialize	the	Ethernet	shield	in
the	setup	section	of	the	sketch.

WaterLevelNotifier/WaterLevelNotifier.pde
	 void	setup()

	 {

	 				//	for	serial	window	debugging

	 				Serial.begin(9600);

	
	 				//	set	up	on	board	led	on	digital	pin	13	for	output

	 				pinMode(ONBOARD_LED,	OUTPUT);

	
	 				//	Initialize	Ethernet	Shield	with	defined	MAC	and	IP	address

	 				Ethernet.begin(MAC,	IPADDR,	GATEWAY,	SUBNET);

	 				//	Wait	for	Ethernet	shield	to	initialize

	 				delay(1000);

	 }

Note	the	use	of	the	Ethernet	object	in	Ethernet.begin(MAC,	IPADDR,	GATEWAY,	SUBNET);.
This	is	where	the	Ethernet	shield	gets	initialized	with	the	assigned	Media	Access

http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelNotifier.pde

Control	(MAC)	address	and	IP	Address.

OK,	we	have	a	working	network	connection.	Now	we	can	move	on	to	the	next
step	of	requesting	the	appropriate	emailer	page	on	your	PHP	server	when	the
bend	thresholds	have	been	exceeded.

Sending	a	Message
Up	to	this	point,	we	have	told	the	Arduino	to	report	the	analog	values	being
generated	by	the	flex	resistor,	initialized	the	Ethernet	shield	to	connect	the
Arduino	to	our	network,	and	added	stubs	for	routines	to	call	out	to	our	PHP
server	script.	Now	it’s	time	to	add	that	routine.	We’ll	call	it	ContactWebServer.

The	ContactWebServer	routine	will	take	the	same	two	parameters	we	captured	for
the	SendWaterAlert	function,	namely	band_value	and	bend_state.	Add	the
ContactWebServer(bend_value,	bend_state);	line	at	the	end	of	the	SendWaterAlert

function,	since	we	will	talk	to	the	designated	PHP	web	server	address	each	time
the	flex	resistor	state	changes.

We’re	almost	done.	We	just	have	to	write	the	body	of	the	ContactWebServer

function.	This	will	consist	of	connecting	to	the	PHP	web	server	and	printing	the
well-formed	HTTP	GET	string	to	the	server.	The	string	will	contain	and	pass	the
values	of	the	bend_state	and	bend_value	variables.	These	will	then	be	parsed	on	the
server	side	and	the	PHP	function	will	respond	in	kind.

WaterLevelNotifier/WaterLevelNotifier.pde
	 void	ContactWebServer(int	bend_value,	int	bend_state)

	 {

	 				Serial.println("Connecting	to	the	web	server	to	send	alert...");

	
	 				if	(client.connect())

	 				{

	 								Serial.println("Connected	to	PHP	server");

	 								//	Make	an	HTTP	request:

	 								client.print("GET	/wateralert.php?alert=");

	 								client.print(bend_state);

	 								client.print("&flex=");

	 								client.print(bend_value);

http://media.pragprog.com/titles/mrhome/code/WaterLevelNotifier/WaterLevelNotifier.pde

	 								client.println("	HTTP/1.0");

	 								client.println();

	 								client.stop();

	 				}

	 				else

	 				{

	 								Serial.println("Failed	to	connect	to	the	web	server");

	 				}

	 }

It’s	time	to	test	the	completed	sketch.	Download	it	to	the	Arduino,	open	up	a
serial	monitor	window,	bend	the	flex	resistor,	and	watch	the	messages.	Check
your	recipient’s	inbox	for	the	corresponding	email	messages.	Did	you	receive	the
“Water	Level	Alert”	and	“Water	Level	OK”	email	messages	that	correspond	to
the	notifications	you	saw	in	the	serial	monitor	window?	If	not,	make	sure	that
your	Arduino	is	connected	to	your	home	network	by	pinging	the	IP	address	you
assigned.

Test	the	PHP	email	URL	and	verify	that	you	receive	an	email	when	you	enter
http://MYPHPSERVER/wateralert.php?alert=1&flex=486	into	your	web	browser.	When
everything	works	as	expected,	we	will	be	ready	to	put	the	finishing	touches	on
this	project	and	make	it	fully	operational.

3.7	All	Together	Now
We’re	nearing	the	home	stretch.	Your	hardware	should	look	like	the	setup
pictured	in	Figure	4,	An	assembled	water	level	notifier.	All	that	remains	is
mounting	the	flex	resistor	securely	and	safely	in	place	so	that	its	flexion	is
accurately	detected	and	not	impeded	by	any	obstacles.

The	base	where	the	two	wires	attach	to	the	exposed	flex	resistor	leads	needs	to
be	firmly	stabilized	so	that	when	the	water	level	rises	and	pushes	the	bobber
upward,	the	base	does	not	pivot	at	its	fulcrum.	If	it	does	pivot,	the	flex	resistor
will	remain	straight	and	the	running	Arduino	sketch	will	fail	to	send	the
appropriate	alert	notification.	Keep	the	base	stabilized	and	prevent	it	from
pivoting.

Try	using	hot	glue,	heat	shrink	tubing,	or	duct	tape.	If	the	base	still	moves,	try
attaching	a	small	wood	chip	splint	on	each	side	of	the	base	of	the	flex	resistor.
Extend	the	splint	length-wise	approximately	two	centimeters	above	and	below
the	base.	Then	snugly	wrap	the	splint	several	times	with	electrical	tape.	Tack	the
top	of	the	splinted	base	to	a	small	wood	post	(such	as	that	cut	from	a	typical	two-
by-four	piece	of	lumber)	that	spans	the	diameter	of	the	hole	containing	the	water
source.

In	the	case	of	a	sump	pit,	you	will	need	to	remove	the	cover	of	the	pit,	measure
the	interior	diameter	and	visit	a	lumberyard	or	hardware	store	that	can	cut	the
wood	for	you.	Add	an	extra	centimeter	to	the	cut	so	that	the	beam	can	be	wedged
tightly	as	it	spans	the	pit.

Figure	4.	An	assembled	water	level	notifier

Similar	principles	apply	in	the	case	of	a	dehumidifier.	Instead	of	using	a	large
piece	of	wood	to	act	as	the	mounting	base	support,	use	the	bottom,	pants-
hanging	portion	of	an	old	wooden	hanger	that	can	be	cut	to	slightly	longer	than
the	diameter	of	the	dehumidifier’s	water	collection	bucket.	Mount	the	base	of	the
splinted	flex	resistor	in	the	center	of	the	wood	support.	Depending	on	the	depth
of	the	dehumidifier’s	bucket,	you	may	need	to	raise	the	base	of	the	flex	resistor
higher	so	that	the	alert	doesn’t	trigger	prematurely	when	the	bucket	is	only	half-
full.

Once	you’re	satisfied	with	the	stability	of	the	mounted	resistor,	place	the	bobber
and	flex	resistor	inside	a	small	plastic	bug,	such	as	a	locking	seal	sandwich	bag.
This	will	keep	the	resistor	dry	and	protected	if	the	water	level	rises	excessively.
Run	the	wires	attached	to	the	resistor	a	meter	or	more	from	the	measured	water
source	and	attach	them	to	the	Arduino/Ethernet	shield	assembly.	Power	the
Arduino	using	the	9-volt	power	supply	and	attach	the	network	cable	to	the
Ethernet	shield.	Several	seconds	after	you	power	up	the	Arduino,	perform	a
quick	bend	test.	If	you	received	the	water	alert	and	all-clear	messages	in	your
email	inbox,	then	you	have	succeeded!

Replace	the	cover	of	the	water	containment	vessel	you	are	monitoring	and	wait
for	your	device	to	alert	you	to	rising	water	levels.

3.8	Next	Steps
Congratulations	on	completing	the	first	Arduino-assisted	home	automation
project	in	this	book.	You	have	already	learned	a	lot	of	reusable	ideas	in	this
project.	You	programmed	an	Arduino,	captured	and	processed	data	from	a	flex
resistor,	and	sent	emails	with	the	help	of	a	PHP-enabled	web	server	and	the
Arduino	Ethernet	shield.	We	will	be	applying	these	concepts	again	in	some	of
the	other	projects	in	this	book.

The	cool	thing	about	designing	and	building	your	own	projects	is	that	they	can
each	be	tailored	to	your	own	exacting	requirements.	Prefer	a	tweet	instead	of	an
email	alert	when	the	water	level	exceeds	the	measurement	threshold?	No
problem.	Replace	the	email	functionality	with	the	code	from	the	Tweeting	Bird
Feeder	project	later	in	this	book.	Want	an	overt	visual	indicator	instead	of	an
electronic	message,	something	like	a	blockbuster	action	movie	warning	lamp
that	flashes	on	and	off?	Easy.	Hook	up	a	switch	to	the	lamp	that	can	be
controlled	to	turn	on	and	off	at	regular	intervals	with	code	lifted	from	the	web-
enabled	light	switch	project.

Here	are	a	few	other	ideas	to	further	extend	the	use	of	a	flex	resistor	in	the	home:

Use	the	variable	analog	data	that	is	emitted	from	the	resistor	to	determine
not	only	when	it	has	been	flexed	but	also	to	what	degree.	This	could	be
useful	in	a	rain	gauge	application	used	to	track	incremental	measurements
of	rainfall	based	on	the	deflection	of	the	resistor	by	the	buoyant	bobber.

Add	an	hourly	data	transmission	to	the	sketch	and	a	routine	in	the	PHP
component	to	receive	the	message.	Current	bend	values	should	be
transmitted	in	this	message	as	well.	Check	the	values	for	anomalies,	such	as
having	no	value	(0)	if	it’s	broken	or	something	greater	than	999	if	there	is	a
short	circuit.	Send	an	email	alert	when	such	threshold	values	are	detected.
Additionally,	if	the	transmission	isn’t	received	in	a	two-hour	time	frame,
send	an	email	informing	the	recipient	of	that	fact.	This	enhanced
monitoring	will	let	you	know	that	your	hardware	may	be	having	issues	and

needs	further	attention.

Temperature	variations	may	affect	the	calibration	of	the	flex	sensor.	Attach
a	temperature	sensor	and	dynamically	change	the	trigger	point	values	based
on	the	surrounding	ambient	temperature	readings.

Concerned	about	losing	roofing	tiles,	shingles,	or	siding	to	the	wind?
Replace	the	bobber	with	a	wind	cup	like	those	found	mounted	on	weather
stations	sold	by	scientific	instrument	supply	companies,	set	it	up	outside,
and	receive	an	email	alert	when	the	wind	is	becoming	excessively	strong.

If	you	use	a	flap	door	for	your	pet,	anchor	one	end	of	the	flex	resistor	to	the
flap	frame	and	slide	the	untethered	end	into	a	small	vinyl	tube	attached	to
the	flap	to	allow	the	resistor	to	slide	freely	but	still	flex	when	the	door	flap
is	being	pushed	open	on	either	end.	Combine	the	sensor	trigger	with	a	web
cam	capture	so	you	can	verify	that	it’s	your	family	pet	coming	in	and	out	of
the	house	and	not	some	uninvited	guest.

Footnotes

[20]
http://www.adafruit.com/index.php?
main_page=product_info&cPath=17_21&products_id=201

[21] http://www.sparkfun.com/products/8606

[22] http://www.makershed.com/ProductDetails.asp?ProductCode=JM691104

[23] http://www.adafruit.com/products/418

[24] https://www.adafruit.com/products/70

[25] http://git-scm.com/

[26]
http://arduino.cc/en/Reference/Ethernet	and
http://www.arduino.cc/playground/Code/Spi,	respectively.

http://www.adafruit.com/index.php?main_page=product_info&cPath=17_21&products_id=201
http://www.sparkfun.com/products/8606
http://www.makershed.com/ProductDetails.asp?ProductCode=JM691104
http://www.adafruit.com/products/418
https://www.adafruit.com/products/70
http://git-scm.com/
http://arduino.cc/en/Reference/Ethernet
http://www.arduino.cc/playground/Code/Spi

[27] http://code.google.com/p/tinkerit/source/browse/trunk/Ethernet2+library/Ethernet2/

[28] http://gkaindl.com/software/arduino-ethernet

Copyright	©	2012,	The	Pragmatic	Bookshelf.

http://code.google.com/p/tinkerit/source/browse/trunk/Ethernet2+library/Ethernet2/
http://gkaindl.com/software/arduino-ethernet

Chapter	4

Electric	Guard	Dog
Remember	the	last	time	you	visited	a	home	with	a	big	dog?	Did	hearing	the
canine	barking	at	the	sound	of	a	doorbell	make	you	think	twice	before	entering
the	premises?	Most	dog	owners	appreciate	the	vigilant	home	surveillance	that
their	pets	provide.	These	furry	friends	have	a	knack	of	detecting	motion	and
springing	immediately	into	action,	barking	and	bumping	their	snouts	against
window	curtains	and	doors	in	hyperactive	effort	to	see	who	or	what	is	outside.

With	the	Electric	Guard	Dog,	you	will	be	able	to	derive	a	similar	security	benefit
minus	the	hassles	of	cleaning	up	dog	hair	afterward	(Figure	5,	Deter	unwanted
visitors	with	the	Electric	Guard	Dog).

Figure	5.	Deter	unwanted	visitors	with	the	Electric	Guard	Dog.

This	project	combines	the	Arduino	board	with	a	wave	shield,	a	Passive	InfraRed

(PIR)	sensor,	and	a	servo	motor.	When	programmed	and	activated,	the	assembly
will	give	the	illusion	of	an	angry	dog	eager	to	pounce	on	an	unwanted	trespasser.
A	small	rod	attached	to	the	arms	of	a	servo	motor	will	bob	up	and	down	when
the	servo	rotates.	A	wad	of	cotton	cloth	attached	to	the	other	end	of	the	rod	will
be	positioned	against	a	window	curtain.	When	motion	is	detected,	the	servo	will
rotate,	moving	the	rod	up	and	down.	The	cloth	attached	to	the	other	end	of	the
rod	will	bump	against	the	curtain	in	time	with	random	barks	and	growls	coming
from	a	speaker	plugged	into	the	wave	shield.	This	sound	and	motion	will	give
the	illusion	of	a	noisy	dog	trying	to	poke	and	prod	with	its	nose	behind	a	door	or
window	curtain.

The	completed	project	is	fully	portable,	since	the	Electric	Guard	Dog	can	be
positioned	in	any	doorway,	window,	or	room	that	you	want	to	get	someone	or
something’s	attention	when	the	motion	detector	is	triggered.

4.1	What	You	Need
This	project	requires	only	a	few	components.	The	total	cost	for	all	the	parts
should	be	under	a	hundred	dollars.	But	since	all	the	parts	can	be	reused	in	other
projects	in	this	book	and	in	future	DIY	efforts,	it	is	a	very	reasonable	investment
consideration.	To	construct	an	Electric	Guard	Dog,	you	will	need	the	following
(see	Figure	6,	Electric	Guard	Dog	parts):

Figure	6.	Electric	Guard	Dog	parts

1.	 An	Arduino	Uno

2.	 An	Adafruit	music	and	sound	add-on	pack	for	Arduino	(includes	wave
shield,	speaker,	wire,	and	SD	card)[29]

3.	 A	high-torque	standard	servo[30]

4.	 A	Passive	InfraRed	(PIR)	motion	sensor

5.	 A	9-volt	power	supply	to	power	the	Arduino	once	untethered	from	the	USB
development	cable

6.	 A	sturdy	wooden	rod	with	cotton	or	rubber	affixed	to	the	tip	to	serve	as	a
surface-protecting	end-cap

7.	 Wire,	twist	ties,	or	rubber	bands	to	affix	the	wooden	rod	to	the	servo	gear

You	will	also	need	a	standard	A-B	USB	cable	to	connect	the	Arduino	to	the
computer.	The	servo	can	be	purchased	at	a	local	hobby	shop,	and	the	PIR	can	be
purchased	from	a	number	of	electronic	parts	retailers,	including	Fry’s	and	Radio
Shack,	as	well	as	from	online	electronics	retailers	like	Adafruit	or	Sparkfun.

Joe	asks:

Is	There	an	Arduino	Shield	That	Can	Play	MP3	Files?

Yes!	Electronics	project	retailer	Sparkfun	sells	an	Arduino	board	called	the	MP3	shield	that	is	similar
in	function	to	Adafruit’s	wave	shield.[31]	However,	due	to	the	differences	in	the	libraries	used,	I	will
focus	on	the	wave	shield	implementation	and	leave	it	to	our	more	adventurous	readers	to	pursue
Sparkfun’s	MP3-based	alternative	on	their	own.	And	for	those	who	need	an	audio	shield	that	plays
even	more	sound	file	formats	like	Windows	Media	Audio,	MIDI,	and	Ogg	Vorbis,	the	Maker	Shed
sells	the	Seeed	Music	Shield,	which	nicely	integrates	audio	file	playback	capabilities	in	a	well-
designed	shield.[32]

Let’s	start	by	connecting	the	project’s	three	main	components	to	make	them
collectively	act	in	a	more	aggressive	manner.

4.2	Building	the	Solution
This	is	one	of	the	easier	projects	in	the	book,	since	it	relies	entirely	on	the
Arduino,	an	add-on	shield,	a	sensor,	and	a	servo	motor.	When	constructed,	the
completed	assembly	should	look	similar	to	the	one	shown	in	Figure	7,	An
Electronic	Guard	Dog.	Here’s	how	we	will	build	it:

1.	 Attach	an	Adafruit	wave	shield	to	the	Arduino.

2.	 Connect	a	PIR	to	the	wave	shield’s	power,	ground,	and	one	of	the	available
digital	pins.

3.	 Connect	a	servo	to	the	wave	shield’s	power,	ground,	and	another	one	of	the
available	digital	pins.

4.	 Download	additional	Arduino	libraries	that	allow	the	wave	shield	to	be
easily	controlled	while	preventing	resource	conflicts	with	sending
instructions	simultaneously	to	the	servo.

5.	 Write	a	sketch	that	randomly	moves	the	servo	and	plays	back	a	snippet	of
audio	when	motion	is	detected	by	the	PIR.

Figure	7.	An	Electronic	Guard	Dog

If	you	haven’t	already	assembled	and	tested	your	wave	shield,	follow	Ladyada’s
instructions	on	how	to	do	so.[33]	When	you	have	confirmed	that	it	works,	we
can	enhance	the	board	by	attaching	the	PIR	sensor	and	servo	motor	actuator	to
the	available	wave	shield’s	pins.

4.3	Dog	Assembly

Figure	8.	Wiring	diagram	for	the	Electric	Guard	Dog

Take	a	look	at	the	schematic	in	Figure	8,	Wiring	diagram	for	the	Electric	Guard
Dog.	The	graphic	shows	wiring	plugging	into	the	wave	shield.	The	wave	shield
is	stacked	on	top	of	the	Arduino	board.	Note	that	the	wave	shield	uses	several	of
the	pins	for	its	own	use	to	interact	with	the	Arduino,	which	is	why	not	all
passthrough	pins	are	available	for	the	sketch.	Closely	follow	the	wiring	diagram
and	you	should	not	have	a	problem.

Attach	the	positive	lead	of	the	PIR	to	the	3.3v	pin	on	the	wave	shield.	Connect
the	negative	lead	to	one	of	the	wave	shield’s	available	ground	pins.	Then	attach

the	control	wire	(the	middle	pin/wire	on	the	PIR)	to	the	wave	shield’s	digital	pin
12.

Next,	attach	the	servo’s	positive	wire	to	the	wave	shield’s	5v	pin.	Connect	the
negative	lead	to	the	wave	shield’s	other	available	ground	pin.	Finally,	connect
the	control	wire	to	the	wave	shield’s	digital	pin	11.

For	brief	testing	purposes,	you	can	attach	male	pins	to	the	wires	and	plug	them
directly	into	the	sockets	on	the	wave	shield.	More	reliable	connections	can	be
achieved	by	using	either	male	or	female	header	pins	instead.	These	can	be
obtained	directly	from	various	Arduino	board	suppliers.	If	you	plan	on	using	the
wave	shield	exclusively	for	this	project,	you	can	solder	the	wiring	permanently
to	the	shield	for	the	most	stable	electrical	connection	possible.

There	is	one	more	step	we	should	take	before	writing	the	sketch.	We	need	to
either	record	and	digitize	a	dog	growling	and	barking	in	various	ways	or	legally
download	audio	samples	from	the	Internet	of	snarling,	barking	dog	sounds.

The	first	option	takes	more	time	and	requires	access	to	a	big	dog	that	can	bark,
snarl,	and	growl	on	command—with	a	microphone	near	its	toothy	yapper,	no
less!	While	this	requires	a	bit	more	extra	work,	the	results	produce	a	more
consistent	and	realistic	effect.	And	because	you	know	the	source,	playback
generates	a	more	meaningful	audio	cue.

Joe	asks:

How	Does	a	PIR	Sensor	Work?

A	PIR	detects	motion	by	comparing	two	samples	of	infrared	radiation	being	emitted	by	a	body
warmer	than	the	background	environment	it	is	moving	against.	When	either	side	of	the	sensor	detects
a	greater	value	than	the	other,	it	sends	a	signal	to	the	digital	out	pin	that	motion	has	been	detected.	The
IR	sensor	at	the	heart	of	a	PIR	is	typically	covered	by	a	dome-shaped	lens	that	helps	to	condense	and
focus	light	so	that	it	is	much	easier	for	the	sensor	to	detect	infrared	variations,	and	thus,	motion.

For	a	more	detailed	explanation	of	the	theory	behind	PIRs,	visit	Ladyada’s	informative	web	page	on
the	subject.[34]

The	second	option	of	searching	on	the	Internet	for	a	variety	of	angry	dog	audio

samples	is	more	convenient	but	rarely	produces	a	consistent	and	believable
overall	effect.	This	is	especially	true	when	the	samples	are	acquired	from	a
variety	of	dog	breeds.	How	can	a	dog	have	the	toothy	snarl	of	a	Doberman	one
minute	and	the	yapping	of	a	miniature	poodle	the	next?	Also,	downloading	audio
samples	from	the	Internet	has	copyright	implications	that	have	to	be	respected.
One	website	that	I	recommend	visiting	is	the	Freesound	Project,[35]	which
features	a	number	of	samples	available	under	the	Creative	Commons	Sampling
Plus	license.

After	you	have	obtained	five	audio	clips	using	either	approach,	you	need	to
convert	them	to	a	format	the	wave	shield	can	interpret.	Based	on	the	conversion
instructions	on	Ladyada’s	website,[36]	samples	must	not	exceed	a	22KHz	16-bit
mono	PCM	(WAV)	format.	You	want	the	highest	audio	quality	possible,	and
there	should	be	plenty	of	space	on	the	SD	card	to	store	them.	The	audio	clips
you	select	for	the	project	should	not	exceed	five	seconds	in	duration	so	they
appear	more	synchronized	with	the	servo	motion	when	the	audio	is	played	back.

You	can	use	an	audio	editor	like	Audacity	to	import	and	convert	and	save	your
audio	clips	to	the	correct	format.[37]	Make	sure	they	are	compatible	by	copying
the	converted	files	to	the	wave	shield’s	SD	card	and	running	the	dap_hc.pde	sketch
posted	on	Ladyada’s	website.[38]	Note	that	we’re	going	to	make	one	change	to
Ladyada’s	wave	shield	demo	sketch.	Instead	of	the	newer	wavehc	library	it	uses,
we	are	going	to	use	the	older	AF_Wave	library.	That	way,	we	can	use	Arduino
community	forum	member	avandalen’s	MediaPlayer	library[39]—it	makes
working	with	wave	shield	sound	files	far	easier.	We	will	take	a	closer	look	at	this
library	and	another	Arduino	community	contributor’s	library	for	servos	when	we
write	the	sketch	in	the	next	section.

4.4	Dog	Training
The	sketch	we	write	will	monitor	the	PIR	for	any	motion	events.	If	movement	is
detected,	the	shield	will	randomly	play	one	of	five	different	audio	files	stored	on
the	wave	shield’s	SD	card.	Simultaneously,	the	servo	motor	rotates	up	to	150
degrees,	depending	on	the	sound	effect	being	played	back.	Attach	a	wooden	rod
to	the	servo	gear	and	the	servo’s	rotation	will	move	the	rod	up	and	down.	When
the	rod	is	positioned	behind	a	curtain,	it	will	give	the	illusion	of	a	dog’s	snout
attempting	to	nudge	the	curtain	aside	so	it	can	see	who’s	at	the	door	or	window.

To	begin,	we	need	to	include	the	MediaPlayer.h	header	file	along	with	its	two
dependencies,	pgmspace.h	(part	of	a	memory	management	library	included	in	the
Arduino’s	standard	installation)	and	util.h	(part	of	the	original	wave	shield’s
AF_Wave	library).	Because	the	MediaPlayer	class	relies	on	the	AF_Wave	library,
make	sure	you	have	already	downloaded,	unzipped,	and	copied	the
uncompressed	AF_Wave	folder	into	the	Arduino’s	libraries	folder.[40]

Next,	create	a	new	sketch	in	the	Arduino	IDE	called	ElectricGuardDog.	Download
the	MediaPlayer	library	from	the	Arduino	playground	website;[41]	extract	the
zip	archive;	and	place	the	unzipped	MediaPlayer.h,	MediaPlayer.pde,	and
MediaPlayerTestFunctions.pde	files	into	the	ElectricGuardDog	folder	created	by	the
Arduino	IDE	when	it	created	the	ElectricGuardDog.pde	file.	If	you	downloaded	the
project	files	for	the	book,	the	Mediaplayer	library	file	dependencies	have	already
been	prebundled	for	you.	The	Mediaplayer	library	allows	us	to	control	audio	file
playback	very	easily.

We	will	also	need	to	call	upon	another	custom	library	to	operate	the	servo	motor.
If	you	try	to	compile	the	sketch	using	the	standard	Arduino	Servo	class,	the
program	will	fail	with	this	error:

	 Servo/Servo.cpp.o:	In	function	`__vector_11':

	 /Applications/Arduino.app/Contents/Resources/Java/libraries/Servo/Servo.cpp:103:

	 multiple	definition	of	`__vector_11'

	

	 AF_Wave/wave.cpp.o:/Applications/Arduino.app/

	 Contents/Resources/Java/libraries/AF_Wave/wave.cpp:33:	first	defined	here

What’s	going	on	here?	The	AF_Wave	library	is	taking	over	the	vector	interrupt	as
the	standard	Servo	library.	Fortunately	for	us,	Arduino	community	contributor
Michael	Margolis	has	written	a	library	that	gives	the	Arduino	the	ability	to
control	up	to	eight	servo	motors	simultaneously.	By	doing	so,	his	library	also
circumvents	the	duplicate	resource	problem	exhibited	by	the	original	Servo
library	when	combined	with	a	wave	shield.

Download	the	ServoTimer2	library,[42]	unzip	it,	and	copy	the	ServoTimer2	folder
into	the	Arduino	libraries	folder.	Keep	in	mind	that	each	time	you	add	a	new
library	to	the	Arduino	libraries	folder,	you	need	to	restart	the	Arduino	IDE	so	the
Arduino’s	avr-gcc	compiler	will	recognize	it.

After	the	wave	shield’s	AF_Wave	and	servo	motor’s	ServoTimer2	library
dependencies	have	been	satisfied,	add	these	references	to	the	beginning	of	the
sketch:

ElectricGuardDog/ElectricGuardDog.pde
	 #include	<avr/pgmspace.h>

	 #include	"util.h"

	 #include	"MediaPlayer.h"

	 #include	<ServoTimer2.h>

Create	several	variables	to	store	Arduino	pin	assignments	and	sensor/actuator
starting	values.

ElectricGuardDog/ElectricGuardDog.pde
	 int	ledPin								=	13;		//	on	board	LED

	 int	inputPin						=	12;		//	input	pin	for	the	PIR	sensor

	 int	pirStatus					=	LOW;	//	set	to	LOW	(no	motion	detected)

	 int	pirValue						=	0;			//	variable	for	reading	inputPin	status

	 int	servoposition	=	0;			//	starting	position	of	the	servo

Next,	create	two	objects	constructed	from	the	MediaPlayer	and	ServoTimer2
libraries	to	more	easily	manipulate	the	servo	motor	and	audio	playback.

http://media.pragprog.com/titles/mrhome/code/ElectricGuardDog/ElectricGuardDog.pde
http://media.pragprog.com/titles/mrhome/code/ElectricGuardDog/ElectricGuardDog.pde

ElectricGuardDog/ElectricGuardDog.pde
	 ServoTimer2	theservo;				//	create	servo	object	from	the	ServoTimer2	class

	 MediaPlayer	mediaPlayer;	//	create	mediaplayer	object

	 																									//	from	the	MediaPlayer	class

Assign	the	variables	we	created	to	the	Arduino	pinModes	in	the	sketch’s	setup()
routine.	Establish	a	connection	to	the	Arduino	IDE	serial	window	to	help
monitor	the	motion	detection	and	audio	playback	events.	Call	the	Arduino’s
randomSeed()	function	to	seed	the	Arduino’s	random	number	generator.	By	polling
the	value	of	the	Arduino’s	analog	pin	0,	we	can	generate	a	better	pseudorandom
number	based	on	the	electrical	noise	on	that	pin.

ElectricGuardDog/ElectricGuardDog.pde
	 void	setup()	{

	 		pinMode(ledPin,	OUTPUT);			//	set	pinMode	of	the	onboard	LED	to	OUTPUT

	 		pinMode(inputPin,	INPUT);		//	set	PIR	inputPin	and	listen	to	it	as	INPUT

	 		theservo.attach(7);								//	attach	servo	motor	digital	output	to	pin	7

	 		randomSeed(analogRead(0));	//	seed	the	Arduino	random	number	generator

	 			Serial.begin(9600);

	 }

With	the	library,	variable,	object,	and	setup	initialization	out	of	the	way,	we	can
now	write	the	main	loop	of	the	sketch.	Essentially,	we	need	to	poll	the	PIR	every
second	for	any	state	changes.	If	the	PIR	detects	motion,	it	will	send	a	HIGH
signal	on	pin	12.	When	this	condition	is	met,	we	power	the	onboard	LED	and
send	a	motion	detection	message	to	the	Arduino	IDE’s	serial	window.

Next,	we	generate	a	random	number	between	1	and	5	based	on	the	seed	we
created	earlier.	Based	on	the	value	generated,	we	then	play	back	the	designated
audio	event	and	move	the	servo	motor	a	predefined	amount	of	rotation.	After
that,	we	wait	a	second	before	returning	the	servo	to	its	starting	position	and	run
the	loop	again.	If	the	PIR	fails	to	detect	motion	(that	is,	if	the	signal	on	pin	12	is
LOW),	we	turn	off	the	onboard	LED,	send	a	No	motion	message	to	the	serial
window,	stop	the	audio	playback,	and	set	the	pirStatus	flag	to	LOW.

ElectricGuardDog/ElectricGuardDog.pde
	 void	loop(){

	 		pirValue	=	digitalRead(inputPin);	//	poll	the	value	of	the	PIR

http://media.pragprog.com/titles/mrhome/code/ElectricGuardDog/ElectricGuardDog.pde
http://media.pragprog.com/titles/mrhome/code/ElectricGuardDog/ElectricGuardDog.pde
http://media.pragprog.com/titles/mrhome/code/ElectricGuardDog/ElectricGuardDog.pde

	 		if	(pirValue	==	HIGH)	{											//	If	motion	is	detected

	 				digitalWrite(ledPin,	HIGH);									//	turn	the	onboard	LED	on

	 				if	(pirStatus	==	LOW)	{																					//	Trigger	motion

	 						Serial.println("Motion	detected");

	
	 						//	Generate	a	random	number	between	1	and	5	to	match	file	names

	 										//	and	play	back	the	file	and	move	the	servo	varying	degrees

	 						switch	(random(1,6))	{

	 								case	1:

	 										Serial.println("Playing	back	1.WAV");

	 										theservo.write(1250);

	 										mediaPlayer.play("1.WAV");

	 										break;

	 								case	2:

	 										Serial.println("Playing	back	2.WAV");

	 										theservo.write(1400);

	 										mediaPlayer.play("2.WAV");

	 										break;

	 								case	3:

	 										Serial.println("Playing	back	3.WAV");

	 										theservo.write(1600);

	 										mediaPlayer.play("3.WAV");

	 										break;

	 								case	4:

	 										Serial.println("Playing	back	4.WAV");

	 										theservo.write(1850);

	 										mediaPlayer.play("4.WAV");

	 										break;

	 								case	5:

	 										Serial.println("Playing	back	5.WAV");

	 										theservo.write(2100);

	 										mediaPlayer.play("5.WAV");

	 										break;

	 						}

	
	 						delay(1000);										//	wait	a	second

	 						theservo.write(1000);	//	return	the	servo	to	the	start	position

	 						pirStatus	=	HIGH;					//	set	the	pirStatus	flag	to	HIGH	to	stop

	 																												//	repeating	motion

	 				}

	 		}	else	{

	 				digitalWrite(ledPin,	LOW);	//	turn	the	onboard	LED	off

	 				if	(pirStatus	==	HIGH){

	 						Serial.println("No	motion");

	 						mediaPlayer.stop();

	 						pirStatus	=	LOW;						//	set	the	pirStatus	flag	to	LOW	to

	 																												//	prepare	it	for	a	motion	event

	 				}

	 		}

	 }

Save	the	code	as	ElectricGuardDog.pde	and	open	up	the	newly	created
ElectricGuardDog	folder	containing	the	ElectricGuardDog.pde	source	file.	Place	the
unzipped	MediaPlayer	files	into	the	ElectricGuardDog	directory.	Double-check	that
the	uncompressed	ServoTimer2	library	files	are	in	the	Arduino	libraries	directory.

Reopen	the	Arduino	IDE,	load	up	the	ElectricGuardDog.pde	file,	and	click	the	Verify
icon	in	the	Arduino	IDE	toolbar.	If	everything	compiled	without	errors,	you	have
entered	the	code	correctly	and	placed	the	dependent	library	files	in	the	correct
locations.	If	not,	review	the	error	messages	to	see	what	dependencies	may	be
missing	and	correct	accordingly.

With	the	sketch	compiled	successfully,	we’re	ready	to	test	and	tweak	the	code.

4.5	Testing	It	Out
Place	the	PIR	sensor	at	a	convenient	location	to	test	motion	detection,	download
the	sketch,	and	open	the	Arduino	IDE’s	serial	window.

Trigger	the	PIR	sensor	by	waving	your	hand	in	front	of	it.	Your	guard	dog
should	react	with	a	random	audio	clip	and	servo	motion.	If	you	want	the	servo
motor	to	rotate	differently,	modify	theservo.write()	method	calls	with	values
ranging	from	1000	to	2200.	This	is	because	the	ServoTimer2	library	uses
microseconds	instead	of	the	angle	of	degrees	used	by	the	original	Servo	library
to	measure	pulse	widths.	As	a	result,	you	may	need	to	experiment	to	find	the
right	degree	of	movement.	After	getting	the	hang	of	the	timing	based	on	the	size
of	the	servo	you	are	using,	determining	the	ideal	values	to	elicit	the	desired
amount	of	rotation	will	become	second	nature.

Now	that	you	have	tested	and	tweaked	the	servo	timing	synchronized	with	the
appropriate	audio	clip,	it’s	time	to	put	the	finishing	touches	on	the	final
placement	of	the	hardware.

4.6	Unleashing	the	Dog
Consider	where	the	PIR	should	be	mounted.	Placing	it	behind	a	glass
windowpane	to	track	outdoor	movement	will	not	work	since	the	detector	cannot
analyze	infrared	signatures.	Ideally,	the	PIR	should	be	placed	in	the	unobstructed
line	of	sight	of	the	area	being	monitored.	If	it’s	just	outside	your	front	door,
thread	wiring	from	the	PIR	mounted	above	the	door	to	the	Arduino/wave	shield
mounted	in	an	enclosure	inside	the	house.

Play	with	the	playback	audio	level.	The	small	speaker	that	accompanies
Adafruit’s	music	and	sound	add-on	pack	may	be	adequate	for	testing,	but	it’s
hardly	loud	enough	to	get	the	attention	of	anyone	in	the	next	room	(let	alone
someone	who	is	outdoors).	Use	the	wave	shield’s	headphone	jack	and	connect	it
to	a	powered	speaker,	such	as	a	boom	box	or	home	stereo.	Set	the	volume	loud
enough	to	get	a	visitor’s	attention.

Attach	one	end	of	the	wooden	rod	to	the	servo	wheel	using	wire,	twist	ties,	or
rubber	bands.	Cover	the	other	end	of	the	rod	with	cloth,	a	cotton	ball,	or	a	rubber
cap	to	protect	the	surface	that	the	rod’s	tip	will	be	bumping	against.	You	can
further	embellish	the	wire	frame	with	a	plastic	dog	snout	from	a	costume	store.
Get	creative!	Just	be	sure	not	to	attach	something	so	heavy	that	the	servo	cannot
generate	enough	torque	to	adequately	move	the	attached	wire.

Place	the	servo	assembly	next	to	a	window	curtain,	preferably	near	the	entryway.
When	the	PIR	is	triggered	and	the	barking	audio	is	played	back,	the	faux
appendage	will	nudge	the	curtain	and	give	the	illusion	of	a	dog’s	nose	moving
behind	the	curtain.	From	the	visitor’s	point	of	view,	it	will	look	like	an	agitated
animal	is	just	behind	the	door,	waiting	to	pounce.	It	will	take	some	tweaking	to
get	right,	but	once	your	setup	is	properly	configured,	the	motion-detected
playback	events	should	look	and	sound	very	convincing!

4.7	Next	Steps
Here	are	a	couple	of	other	ideas	to	elevate	this	project	to	the	next	level:

Replace	the	dog	barking	samples	with	a	booming	klaxon,	a	piercing	alarm
bell,	or	science	fiction	self-destruct	sound	effects.	Swap	out	the	fake	dog
snout	attached	to	the	servo	arm	with	a	laser	pen	light	that	sweeps	the
entryway.	Imagine	your	front	doorway	looking	like	something	out	of	a
science	fiction	thriller!

Add	an	ultrasonic	rangefinder	and	alter	the	reaction	of	sound	and	motion
based	on	the	proximity	of	the	movement	being	captured.	As	a	intruder
comes	closer	to	the	sensor,	have	the	volume	get	louder	and	the	servo	move
more	erratically.	The	closer	one	gets	to	the	sensor,	the	more	agitated	the
Electric	Guard	Dog	becomes.

Upscale	your	Guard	Dog	into	a	super-sized,	weatherized	garden	scarecrow.
Use	more	powerful	stepper	motors	connected	to	a	higher	voltage	external
power	source.	Make	a	life-size	replica	of	yourself	in	old	coveralls	and	use
PVC	tubing	connected	to	the	stepper	motors	and	wire	akin	to	the	strings	of
a	marionette	to	control	the	excited	motions	of	the	scarecrow’s	arms	and
legs.

Reuse	your	Electric	Guard	Dog	rig	on	Halloween.	Cover	in	a	“ghost”	sheet
or	configure	a	mask	with	hinged	jaws	attached	to	servos	that	greets	visitors
with	a	spooky	voice	and	ethereal	movements.

Combine	the	Electric	Guard	Dog	with	other	projects	from	the	book	to	turn
on	lights,	send	an	email,	or	lock/unlock	the	door	when	motion	is	detected.

Footnotes

[29] http://www.adafruit.com/products/175

[30] http://www.adafruit.com/products/155

http://www.adafruit.com/products/175
http://www.adafruit.com/products/155

[31] http://www.sparkfun.com/products/9736

[32]
http://www.makershed.com/ProductDetails.asp?
ProductCode=MKSEEED14

[33] http://www.ladyada.net/make/waveshield/

[34] http://www.ladyada.net/learn/sensors/pir.html

[35] http://www.freesound.org

[36] http://www.ladyada.net/make/waveshield/convert.html

[37] http://audacity.sourceforge.net/

[38] http://www.ladyada.net/make/waveshield/libraryhc.html

[39] http://www.arduino.cc/playground/Main/Mediaplayer

[40] http://www.ladyada.net/media/wavshield/AFWave_18-02-09.zip

[41] http://www.arduino.cc/playground/Main/Mediaplayer

[42] http://www.arduino.cc/playground/uploads/Main/ServoTimer2.zip

Copyright	©	2012,	The	Pragmatic	Bookshelf.

http://www.sparkfun.com/products/9736
http://www.makershed.com/ProductDetails.asp?ProductCode=MKSEEED14
http://www.ladyada.net/make/waveshield/
http://www.ladyada.net/learn/sensors/pir.html
http://www.freesound.org
http://www.ladyada.net/make/waveshield/convert.html
http://audacity.sourceforge.net/
http://www.ladyada.net/make/waveshield/libraryhc.html
http://www.arduino.cc/playground/Main/Mediaplayer
http://www.ladyada.net/media/wavshield/AFWave_18-02-09.zip
http://www.arduino.cc/playground/Main/Mediaplayer
http://www.arduino.cc/playground/uploads/Main/ServoTimer2.zip

Chapter	5

Tweeting	Bird	Feeder
Both	of	my	kids	are	bird	lovers.	They	have	had	parakeets	since	they	were
toddlers	and	enjoy	watching	wild	birds	nest	and	feed	outside	their	bedroom
windows.	But	one	of	the	chores	that	somehow	always	slips	past	us	is	refilling	the
feeders	with	birdseed.	For	a	variety	of	reasons,	there	may	be	days,	sometimes
even	weeks,	that	go	by	without	a	refill.	Wouldn’t	it	be	so	much	easier	for	the
feeder	to	tell	us	when	it	needed	to	be	refilled?

That	need	was	the	genesis	of	inspiration	for	this	project,	and	what	better	way	to
receive	the	notification	than	via	a	tweet	on	Twitter.	Interested	friends	and	family
members	can	follow	the	feeder	and	know	when	birds	are	feeding	from	it,	when	it
needs	a	refill,	and	when	the	refill	chore	has	been	satisfied.	(See	Figure	9,	Receive
a	Twitter	notification	from	your	bird	feeder.)	Since	we	will	already	be	tracking
the	refilling	patterns	via	Twitter,	let’s	make	the	feeder	broadcasts	even	more
interesting	by	adding	a	homemade	sensor	on	the	feeder	perch	that	will	record
when	birds	are	enjoying	a	meal	and	for	how	long.	Before	posting	the	tweets,	we
will	timestamp	and	record	these	events	to	a	database	so	we	can	visualize	feeding
patterns	over	time.

Was	April	a	more	ravenous	month	for	the	birds	compared	to	July?	Are	early
mornings	a	busier	time	of	day	than	late	afternoons?	What	is	the	average	time
birds	perch	at	the	feeder?	What	are	the	time	intervals	between	perches?	How
frequently	does	the	feeder	need	to	be	refilled	with	seed?	With	the	Tweeting	Bird
Feeder,	you	will	be	able	to	take	on	the	role	of	field	researcher	to	discover	these
and	other	feeding	behavior	questions.	It’s	time	to	fly!

Figure	9.	Receive	a	Twitter	notification	from	your	bird	feeder	...when
birds	are	perching,	as	well	as	when	seed	needs	replenishing.

5.1	What	You	Need
Since	this	will	be	our	first	outdoor	project,	the	equipment	costs	are	more
expensive	for	several	reasons.	First,	unless	you	are	willing	to	drill	holes	through
your	walls	or	leave	a	window	or	door	open	to	run	an	Ethernet	cable	to	the	feeder,
we	will	need	an	untethered	way	to	broadcast	sensor	events.	Fortunately,	a	low-
power	and	relatively	low-cost	option	exists	in	the	form	of	XBee	radios.	While
these	take	a	little	extra	effort	to	configure	initially,	they	are	fairly	reliable,	easy	to
communicate	with,	and	don’t	require	much	attention	once	operational.

Second,	while	we	could	use	the	standard	size	Arduino	Uno	(as	shown	in	the
wiring	diagrams	throughout	this	chapter),	it	might	prove	to	be	too	long	and/or
too	wide	to	conveniently	fit	into	a	typical	bird	feeder.	Consequently,	I
recommend	spending	a	few	extra	dollars	on	an	Arduino	Nano.	The	Nano	is
better	suited	to	match	the	feeder’s	space	constraints.	The	nice	thing	about	the
Nano	is	that	the	pin	configurations	and	the	hardware	are	nearly	identical	to	that
of	its	bigger	brother,	and	the	Nano	delivers	all	that	Arduino	goodness	in	a
package	within	a	much	smaller	footprint.

Figure	10.	Tweeting	Bird	Feeder	parts

Third,	while	it	is	feasible	to	power	the	electronics	via	a	long	extension	cord
plugged	into	an	outdoor	outlet	akin	to	a	holiday	lighting	scenario,	such	a
configuration	is	not	a	self-contained	system.	Besides,	it	would	be	appropriate	to
incorporate	a	greener	energy	option	to	be	kinder	to	our	environment.

Finally,	due	to	the	need	to	protect	the	electronics	from	the	elements,	we	will
need	to	do	a	good	job	weatherizing	our	assembly.	Here’s	the	shopping	list	(refer
to	the	photo	in	Figure	10,	Tweeting	Bird	Feeder	parts):

1.	 An	Arduino	Uno	or	an	Arduino	Nano[43]

2.	 Two	XBee	radios	with	adapter	kits	and	FTDI	connector	cable[44]

3.	 A	photocell

4.	 A	strip	of	aluminum	foil

5.	 A	piece	of	wire

6.	 A	small	solar	panel	with	built-in	rechargeable	battery	and	USB	connector,
such	as	those	provided	by	Solio[45]

7.	 One	10k	ohm	resistor	and	one	10M	ohm	resistor—verify	that	the	color
bands	on	the	resistors	are	brown,	black,	orange,	and	gold	for	the	10k	ohm
and	brown,	black,	blue,	and	gold	for	the	10M	ohm	resistors.	Refer	to	Figure
11,	Tweeting	Bird	Feeder	resistors.	Also	shown	in	the	photo	is	the	photocell
(also	referred	to	as	a	CdS	photoresistor).

Figure	11.	Tweeting	Bird	Feeder	resistors

8.	 A	bird	feeder	with	a	large	enough	seed	cavity	to	house	the	weatherized
Nano	and	XBee	assembly

9.	 A	computer	(not	pictured),	preferably	Linux	or	Mac-based,	with	Python	2.6
or	higher	installed	to	process	incoming	messages	from	the	bird	feeder

If	you	opt	to	use	the	Arduino	Nano	in	place	of	the	Arduino	Uno,	you	will	also
need	a	standard	A	to	Mini-B	USB	cable	(not	pictured)	to	connect	the	Arduino
Nano	to	the	computer.	Additionally,	since	the	Arduino	Nano	uses	male	pins	for
wiring	connections	instead	of	the	female	headers	found	on	an	Arduino	Uno,	you
will	need	female	jumper	wires	(not	shown)	instead	of	standard	wires.	This	will
allow	you	to	more	easily	attach	wires	to	the	Nano’s	pins	without	having	to	solder

the	wiring	connections	in	place.

This	project	is	a	more	complex	than	the	Water	Level	Notifier,	and	getting	the
XBee	radios	working	reliably	is	the	trickiest	part.	Still,	it’s	worth	the	effort	since
you	will	not	only	have	a	cool	twenty-first-century	high-tech	bird	feeder,	but	you
will	also	be	able	to	reuse	the	XBee	radio	setup	in	several	other	projects.	Ready	to
roll	up	your	sleeves?	Then	let’s	get	to	it!

5.2	Building	the	Solution
Assembling	the	hardware	to	fit	snuggly	inside	the	feeder	may	require	some
ingenuity,	especially	if	the	bird	feeder	doesn’t	offer	much	space	inside	the	seed
container.	Before	we	start	cramming	electronics	into	the	feeder,	we	first	need	to
make	sure	our	components	work	as	expected.

1.	 We	will	start	with	the	easy	part	of	connecting	the	aluminum	foil	capacitive
sensor	to	the	Arduino	and	writing	a	function	that	will	send	a	message	to	the
serial	window	(and	eventually	the	serial	port	of	the	attached	XBee	radio)
when	the	sensor	is	triggered.

2.	 Next,	we	will	hook	up	the	photocell	to	the	Arduino	and	write	the	code	for	it
to	react	to	changes	in	light.

3.	 Then	we	will	pair	the	two	XBee	radios	and	transmit	these	events	from	the
XBee	radio	attached	to	the	Arduino	to	the	other	XBee	radio	tethered	to	a
computer	via	an	FTDI	USB	cable.

4.	 And	finally,	we	will	write	a	Python	script	that	will	capture	the	data	into	an
SQLite	database	and	format	and	transmit	the	messages	to	be	posted	on
Twitter.

Once	everything	is	working,	we	will	compact	the	Arduino	(preferably	the
Nano)+XBee+perch	resistor+photocell	assembly	into	a	weatherized	package,
house	it	in	the	feeder,	fill	the	feeder	with	seed,	and	go	outside	for	a	live	field	test.

5.3	The	Perch	Sensor
Bird	feeders	come	in	different	shapes	and	sizes.	I	opted	to	go	with	a	low-tech
solution	for	determining	when	a	bird	lands	on	the	feeder	perch.	While	it	is
certainly	possible	to	construct	an	elaborate	pressure	switch	mechanism,	the	time
and	expense	required	to	implement	it	seems	like	a	lot	of	work	just	to	detect	when
something	grips	the	perch.	Instead,	we	can	monitor	fluctuations	in	electrical
capacitance.

Cover	the	feeder	perch	with	aluminum	foil,	attach	a	wire	from	the	foil	to	a
resistor	connected	to	the	digital	pins	on	the	Arduino.	By	measuring	baseline
values	and	fluctuations	detected	when	a	bird	lands	on	this	sensor,	we	can
establish	a	threshold	value	to	determine	when	a	landing	message	should	be
transmitted.

Building	the	Sensor
Building	and	testing	the	perch	sensor	is	the	easiest	part	of	this	project.	Take	a
piece	of	aluminum	foil,	flatten	it	to	half	the	size	of	a	gum	stick	wrapper,	and
wrap	it	across	the	bird	perch.	Then	take	a	10M	ohm	resistor	and	insert	one	end
into	the	Arduino’s	digital	pin	7	and	the	other	end	in	digital	pin	10.	Then	connect
a	wire	from	the	foil	to	the	resistor	lead	that	is	connected	to	the	Arduino’s	digital
pin	7.	For	the	wiring	diagram,	refer	to	Figure	12,	Wiring	up	a	capacitive	sensor.

Figure	12.	Wiring	up	a	capacitive	sensor

Programming	the	Sensor
Connect	the	Arduino	to	your	computer	and	fire	up	the	Arduino	IDE	to	write	the
sensing	code.	Like	the	Water	Level	Notifier	project,	we	will	write	code	that	we
will	use	to	do	the	following:

1.	 Display	the	capacitive	sensor’s	electrical	values	to	the	Arduino	IDE’s	serial
monitor	window.

2.	 Identify	the	baseline	electrical	value	of	the	sensor.

3.	 Alter	the	flow	of	current	when	placing	a	finger	on	the	sensor.

4.	 Record	the	new	value	to	use	for	our	alert	trigger	condition.

In	order	to	more	easily	and	programmatically	detect	the	electrical	changes	that
occur	when	something	like	a	finger	or	a	bird	lands	on	the	foil,	we	will	call	upon
the	help	of	Arduino	enthusiast	Paul	Badger.	Paul	wrote	an	Arduino	library	that
makes	measuring	changes	in	capacitive	sensors	like	the	foil	one	we	constructed
for	this	project	a	breeze.	Called	the	Capacitive	Sensing	library,[46]	the	library

gives	Arduino	programmers	the	ability	to	turn	two	or	more	Arduino	pins	into	a
capacitive	sensor	that	can	be	used	to	sense	the	electrical	capacitance	of	a	body.	A
human	body	is	considerably	larger	than	a	bird	and	will	therefore	create	a	much
larger	deflected	value.	Nevertheless,	a	bird	also	has	measurable	electrical
capacitance,	and	that	is	the	threshold	value	we	will	attempt	to	refine	in	our
program.

Download	this	library,	uncompress	its	contents,	and	copy	it	into	your
Arduino’slibraries	folder.	For	more	details,	refer	to	Appendix	1,	Installing
Arduino	Libraries.

Create	a	new	Arduino	project	and	use	the	#	include	CapSense.h;.

Due	to	the	difference	in	size	and	surface	area	touching	the	foil,	a	bird	will	have	a
very	different	value	than	that	of	a	person.	If	possible,	measure	the	value
difference	with	a	bird.	Fortunately	my	kids	have	pet	parakeets,	and	these	birds
were	all	too	eager	to	be	test	subjects	in	exchange	for	the	seed	supplied	by	the
feeder.	My	test	measurements	concluded	that	the	baseline	value	varied	between
900	and	1400,	and	the	bird’s	capacitance	increased	that	value	to	more	than	1500.
Using	these	values,	we	can	use	the	same	type	of	conditional	code	from	the	Water
Level	Notifier	project	to	raise	and	reset	the	bird	landing	and	departure
notifications.

We	will	write	the	code	that	will	load	the	CapSense	library	and	capture	and
display	the	capacitive	values	to	the	serial	monitor	window.

TweetingBirdFeeder/BirdPerchTest.pde
	 #include	<CapSense.h>

	
	 #define	ON_PERCH		1500

	 #define	CAP_SENSE			30

	 #define	ONBOARD_LED	13

	
	 CapSense	foil_sensor			=	CapSense(10,7);	//	capacitive	sensor

	 																							//	resistor	bridging	digital	pins	10	and	7,

	 																							//	wire	attached	to	pin	7	side	of	resistor

	 int	perch_value		=	0;

	 byte	perch_state	=	0;

http://media.pragprog.com/titles/mrhome/code/TweetingBirdFeeder/BirdPerchTest.pde

	
	 void	setup()

	 {

	 				//	for	serial	window	debugging

	 				Serial.begin(9600);

	
	 				//	set	pin	for	onboard	led

	 				pinMode(ONBOARD_LED,	OUTPUT);

	 }

	
	 void	SendPerchAlert(int	perch_value,	int	perch_state)

	 {

	 				digitalWrite(ONBOARD_LED,	perch_state	?	HIGH	:	LOW);

	 				if	(perch_state)

	 								Serial.print("Perch	arrival	event,	perch_value=");

	 				else

	 								Serial.print("Perch	departure	event,	perch_value=");

	 				Serial.println(perch_value);

	 }

	
	 void	loop()	{

	 				//	wait	a	second	each	loop	iteration

	 				delay(1000);

	
	 				//	poll	foil	perch	value

	 				perch_value	=		foil_sensor.capSense(CAP_SENSE);

	
	 				switch	(perch_state)

	 				{

	 				case	0:	//	no	bird	currently	on	the	perch

	 								if	(perch_value	>=	ON_PERCH)

	 								{

	 												perch_state	=	1;

	 												SendPerchAlert(perch_value,	perch_state);

	 								}

	 								break;

	
	 				case	1:	//	bird	currently	on	the	perch

	 								if	(perch_value	<	ON_PERCH)

	 								{

	 												perch_state	=	0;

	 												SendPerchAlert(perch_value,	perch_state);

	 								}

	 								break;

	 				}

	 }

Note	the	defined	ON_PERCH	value	of	1500	to	compare	against	the	recorded
perch_value.	Due	to	variations	in	the	conductivity	and	surface	area	of	your	foil
sensor,	you	may	need	to	tweak	the	ON_PERCH	threshold	value	just	like	you	did	for
the	Water	Level	Notifier	project	so	that	it	works	best	for	your	configuration.
Also	note	the	value	of	30	assigned	to	the	CAP_SENSE	constant.	This	is	the	number
of	samples	to	poll	during	the	capacitive	measurement	cycle.

Now	that	we	have	a	working	bird	perch	sensor,	we	need	a	way	for	the	feeder	to
alert	us	when	it	is	running	low	on	seed.	How	will	we	do	this?	A	photocell	can
help.

5.4	The	Seed	Sensor
A	photocell	measures	light	intensity,	with	higher	intensity	correlating	with	higher
current	and	lower	intensity	with	lower	current.	For	a	more	detailed	explanation
and	tutorial	on	photocells,	visit	Ladyada’s	ever-helpful	website.[47]	By	placing
the	photocells	at	a	level	beneath	the	seeds	poured	into	the	feeder,	we	can	detect
when	the	seed	level	dips	below	the	sensor,	exposing	it	to	more	light	and	thereby
alerting	us	that	the	feeder	needs	to	be	refilled.

Before	drilling	holes	into	the	feeder	for	placement	of	the	photocell,	we	need	to
write	some	code	and	test	it	using	the	same	approach	that	we	did	for	our
homemade	foil	resistor.

Connect	one	of	the	photocell	leads	to	the	Arduino	5v	pin	and	connect	the	other
photocell	lead	to	the	Arduino	analog	pin	0.	Then	bridge	a	10k	ohm	resistor
between	the	Arduino	analog	pin	0	and	the	Arduino	ground	pin,	as	shown	in
Figure	13,	Wiring	diagram	for	the	photocell	test.	Does	this	electrical	pattern	look
familiar?	Yep,	it’s	the	same	wiring	configuration	used	previously	with	Arduino
sensors	in	this	book.	This	is	a	frequent	pattern	for	various	types	of	sensors	that
connect	with	the	Arduino.

Figure	13.	Wiring	diagram	for	the	photocell	test

With	the	photocell	connected,	connect	the	Arduino	to	the	computer	via	the	USB
serial	cable	and	launch	the	Arduino	IDE.	Using	the	same	technique	used	for	the
foil	switch,	monitor	analog	pin	0	values	in	the	Arduino	IDE’s	serial	monitor
window	and	capture	baseline	values	for	when	the	sensor	is	bathed	in	ambient,
standard	lighting	conditions.	Then	cover	the	sensor	with	your	finger	to	block
incoming	light.	Note	the	difference	in	value.

Just	as	we	did	for	the	capacitive	test,	we	will	write	the	same	type	of	procedures
and	conditional	statements	to	test	for	luminosity	thresholds.	Indeed,	you	could
copy	and	paste	code	from	the	foil	test	and	simply	change	variable	names	and
connected	pin	assignments	to	create	the	working	program.

TweetingBirdFeeder/SeedPhotocellTest.pde
	 #define	SEED													500

	 #define	ONBOARD_LED							13

	 #define	PHOTOCELL_SENSOR			0

	 int	seed_value		=	0;

	 byte	seed_state	=	0;

	 void	setup()

	 {

	 				//	for	serial	window	debugging

	 				Serial.begin(9600);

	
	 				//	set	pin	for	onboard	led

	 				pinMode(ONBOARD_LED,	OUTPUT);

	 }

	
	 void	SendSeedAlert(int	seed_value,	int	seed_state)

	 {

	 				digitalWrite(ONBOARD_LED,	seed_state	?	HIGH	:	LOW);

	 				if	(seed_state)

	 								Serial.print("Refill	seed,	seed_value=");

	 				else

	 								Serial.print("Seed	refilled,	seed_value=");

	 				Serial.println(seed_value);

	 }

	
	 void	loop()	{

	 				//	wait	a	second	each	loop	iteration

	 				delay(1000);

	

http://media.pragprog.com/titles/mrhome/code/TweetingBirdFeeder/SeedPhotocellTest.pde

	 				//	poll	photocell	value	for	seeds

	 				seed_value	=	analogRead(PHOTOCELL_SENSOR);

	
	 				switch	(seed_state)

	 				{

	 				case	0:	//	bird	feeder	seed	filled

	 								if	(seed_value	>=	SEED)

	 								{

	 												seed_state	=	1;

	 												SendSeedAlert(seed_value,	seed_state);

	 								}

	 								break;

	
	 				case	1:	//	bird	feeder	seed	empty

	 								if	(seed_value	<	SEED)

	 								{

	 												seed_state	=	0;

	 												SendSeedAlert(seed_value,	seed_state);

	 								}

	 								break;

	 				}

	 }

Measuring	and	assigning	the	defined	SEED	threshold	value	for	the	photocell	is
much	easier	and	more	reliable	than	the	capacitive	foil	test	we	did	earlier.	While
you	can	use	your	finger	to	cover	up	the	photocell	and	measure	the	value	change,
it	is	more	authentic	to	test	with	real	seed.	If	you	don’t	want	to	drill	holes	in	your
bird	feeder	to	set	the	photocell	just	yet,	use	a	paper	cup	and	place	the	photocell
toward	the	bottom	of	the	cup.

Similar	to	the	calibration	procedure	we	used	in	the	Water	Level	Notifier	project,
add	these	lines	after	the	seed_value	=	analogRead(PHOTOCELL_SENSOR);	request	in	the
sketch’s	main	program	loop:

	 Serial.print("seed_value=");

	 Serial.println(seed_value);

Record	the	seed_value	starting	value,	then	fill	the	cup	with	seed	and	measure	the
new	value.	Use	these	values	to	set	the	starting	and	threshold	values	for	the
photocell.

If	you	do	not	see	any	change,	check	your	wiring	and	try	again.	In	my	tests	with
the	photocell,	the	baseline	value	fluctuated	between	450	and	550.	It	reported
below	100	when	my	finger	covered	the	sensor.	Use	whatever	upper	and	lower
limit	values	you	recorded	with	your	tests,	keeping	in	mind	that	they	will	need	to
be	recalibrated	once	the	sensor	is	mounted	inside	the	feeder.

Now	that	monitoring	is	working	for	both	the	perch	and	light	sensors,	we	need	a
way	to	communicate	when	those	sensor	thresholds	have	been	exceeded.	It’s	not
very	practical	to	run	an	Ethernet	cable	from	an	indoor	network	hub	to	an	outdoor
tree	limb.	Not	to	mention	that	trying	to	fit	a	bulky	Arduino+Ethernet	shield
assembly	into	the	confined	space	of	a	bird	feeder	would	be	a	challenge.	We	will
use	the	convenience	of	low-power	wireless	communication	to	transmit	these
sensor	notifications	to	an	indoor	computer.	Then	we	will	use	that	computer’s
faster	processing	and	larger	storage	capacity	to	analyze	and	act	upon	the	data
received.

5.5	Going	Wireless
Although	more	ubiquitous	802.11b/g	Wi-Fi	shields	exist	for	the	Arduino	(such
as	Sparkfun’s	WiFly	Shield),	the	most	prevalent	means	of	Arduino	wireless
communication	is	via	XBee	radios.	The	initial	outlay	for	a	set	of	XBee	devices
can	be	a	bit	pricey.	This	is	because	in	addition	to	the	XBee	radios,	you	also	need
an	FTDI	USB	cable	to	connect	one	of	the	radios	to	a	computer	to	act	as	a
wireless	serial	port.

The	other	XBee	is	typically	connected	to	an	Arduino.	And	to	make	it	easier	to
make	these	connections,	additional	kits	are	available	to	mount	the	XBee	radios
to	an	assembly	that	better	exposes	the	connection	pins	while	also	displaying	data
transfers	via	onboard	LEDs.	Such	visual	indicators	can	be	quite	helpful	when
debugging	or	troubleshooting	a	paired	XBee	connection.	Nevertheless,	the	fact
that	XBees	offer	a	low-power	and	long-range	(up	to	150	feet)	solution	coupled
with	easy	connectivity	and	data	transfer	protocol	make	them	an	ideal	wireless
technology	for	our	project	needs.

In	order	to	more	easily	interface	with	the	XBee	radios,	Adafruit	has	designed	an
adapter	kit	that	“doesn’t	suck,”	but	it	does	require	you	to	solder	a	few	small
components	onto	the	adapter	board.	Assemble	the	adapter	following	the
instructions	posted	on	Ladyada’s	website.[48]

Once	assembled,	configuring	and	pairing	the	XBee	radios	isn’t	too	difficult,
though	one	of	the	more	helpful	utilities	used	to	configure	them	only	runs	on
Windows.

Using	the	screen	Utility
A	helpful	serial	monitoring	utility	for	*nix-based	platforms	like	Mac	OS	X	and
Linux	is	the	screen	application.	To	use	screen	in	OS	X,	determine	the	serial	port
that	the	FTDI	USB	cable	is	using	by	launching	the	Arduino	IDE.	Select	Serial	Port
from	the	Arduino	IDE	Tools	menu	to	identify	the	serial	port	assigned	to	it.

In	my	case,	the	device	name	of	the	FTDI	USB-to-XBee	adapter	connection	was
devtty.usbserial-A6003SHc,	though	yours	may	be	different,	depending	on	other
devices	connected	to	your	computer.	Open	up	the	Terminal	application	and	type

screen	devtty.YOURDEVICE	9600.	This	will	open	the	serial	port	and	allow	you	to	enter
and	receive	characters	at	a	communication	rate	of	9600	baud.	To	gracefully	exit
the	screen	utility,	press	Control-A	followed	by	Control-\.

Following	the	instructions	for	the	XBee	point-to-point	sample	program	available
on	Ladyada’s	web	page,[49]	attach	the	power,	ground	(Gnd),	receive	(RX),	and
transmit	(TX)	pins	of	one	of	the	adapter-mounted	XBees	to	the	Arduino’s	5V,
Gnd,	digital	2,	and	digital	3	pins.	Plug	the	Arduino	into	your	computer,	upload
the	test	program,	open	up	the	Arduino	serial	window,	and	make	sure	it	is	set	to	a
rate	of	9600	baud.	Leave	the	Arduino	plugged	in	and	attach	the	other	paired
XBee	to	your	computer	via	the	FTDI	USB	cable.	Open	up	a	serial	terminal
session:	Hyperterminal	in	Windows,	the	screen	on	a	Mac,	or	various	serial
communication	programs	such	as	Minicom	for	Linux.[50]

Once	you	have	established	a	serial	connection,	type	in	a	few	characters	in	your
serial	application’s	input	screen.	If	your	XBee	radios	are	properly	configured,
you	will	see	those	typed	characters	appear	in	the	Arduino	serial	window.	If	you
connected	the	XBees	to	the	Arduino	and	the	FTDI	cable	using	XBee	adapters,

you	should	also	see	the	adapter’s	green	transmit	and	red	receive	LEDs	blinking
as	the	characters	are	wirelessly	transmitted	from	one	XBee	radio	to	the	other.

If	you	do	not	see	the	characters	being	displayed	on	the	receiving	window,	review
the	XBee	radio	wiring	to	the	appropriate	Arduino	ports.	You	can	also	swap	the
radios	to	verify	both	are	recognized	using	the	FTDI	USB	connection.	Type	an	AT
in	your	serial	application’s	terminal	window	and	verify	that	it	returns	an	OK
acknowledgment.

If	the	XBees	still	don’t	seem	to	be	communicating	with	one	another,	contact	the
retailer	you	purchased	them	from	for	further	assistance.

With	the	XBee	radios	successfully	paired,	we	will	reconnect	both	the	photocell
and	foil	resistor	to	the	XBee-outfitted	Arduino	and	combine	the	code	that	will
receive	the	sensor’s	trigger	condition	events.	For	the	complete	wiring	diagram,

refer	to	Figure	14,	Tweeting	bird	feeder	with	sensors	and	XBee	radio	attached	to
Arduino.

Figure	14.	Tweeting	bird	feeder	with	sensors	and	XBee	radio	attached	to
Arduino

Consider	using	a	breadboard,	or	solder	the	resistors	along	with	the	wires	being
connected	to	the	Arduino	pins.	If	you	opt	for	a	breadboard	for	testing	purposes,
keep	in	mind	that	it	probably	won’t	fit	in	the	feeder,	so	be	prepared	to	solder	the
wiring	permanently	in	place	after	the	tests	prove	successful.	And	depending	on
the	orientation	of	the	Arduino	Uno	or	Nano	as	it	is	positioned	into	the	bird
feeder,	you	may	need	to	use	straight	header	pins	on	the	XBee	adapter	board
instead	of	the	default	right-angled	pins	that	accompany	the	kit.	The	goal	is	to
make	sure	everything	fits	inside	the	feeder	in	a	secure	and	serviceable	way.	And

recall	that	unlike	the	female	headers	on	an	Arduino	Uno,	the	Arduino	Nano	uses
male	pins	instead.	As	such,	you	will	need	to	use	female	jumper	wires	to	better
accommodate	the	connections	to	the	Nano’s	male	pins.

Finishing	the	Sketch
We	are	going	to	poll	both	the	foil	and	photocell	sensors	for	activity,	first	to	the
Arduino	IDE	serial	window,	then—with	one	small	replacement	in	our	code—to
the	XBees.	Essentially,	we	are	simply	going	to	combine	the	threshold	code	for
the	foil	and	photocell	that	we	tested	earlier	while	sending	threshold	alerts	to	the
serial	port	of	the	XBee	radio.	Adding	this	logic	to	what	we	already	wrote	to	test
the	perch	and	seed	status,	we	can	complete	the	sketch	for	the	project.

TweetingBirdFeeder/TweetingBirdFeeder.pde
	 #include	<CapSense.h>;

	 #include	<NewSoftSerial.h>

	
	 #define	ON_PERCH								1500

	 #define	SEED													500

	 #define	CAP_SENSE									30

	 #define	ONBOARD_LED							13

	 #define	PHOTOCELL_SENSOR			0

	 //	Set	the	XBee	serial	transmit/receive	digital	pins

	 NewSoftSerial	XBeeSerial	=	NewSoftSerial(2,	3);

	 CapSense	foil_sensor					=	CapSense(10,7);	//	capacitive	sensor

	 																									//	resistor	bridging	digital	pins	10	and	7,

	 																									//	wire	attached	to	pin	7	side	of	resistor

	 int	perch_value		=	0;

	 byte	perch_state	=	0;

	 int	seed_value			=	0;

	 byte	seed_state		=	0;

	
	 void	setup()

	 {

	 				//	for	serial	window	debugging

	 				Serial.begin(9600);

	
	 				//	for	XBee	transmission

	 				XBeeSerial.begin(9600);

	
	 				//	set	pin	for	onboard	led

	 				pinMode(ONBOARD_LED,	OUTPUT);

http://media.pragprog.com/titles/mrhome/code/TweetingBirdFeeder/TweetingBirdFeeder.pde

	 }

	
	 void	SendPerchAlert(int	perch_value,	int	perch_state)

	 {

	 				digitalWrite(ONBOARD_LED,	perch_state	?	HIGH	:	LOW);

	 				if	(perch_state)

	 				{

	 								XBeeSerial.println("arrived");

	 								Serial.print("Perch	arrival	event,	perch_value=");

	 								}

	 				else

	 				{

	 								XBeeSerial.println("departed");

	 								Serial.print("Perch	departure	event,	perch_value=");

	 				}

	 				Serial.println(perch_value);

	 }

	
	 void	SendSeedAlert(int	seed_value,	int	seed_state)

	 {

	 				digitalWrite(ONBOARD_LED,	seed_state	?	HIGH	:	LOW);

	 				if	(seed_state)

	 				{

	 								XBeeSerial.println("refill");

	 								Serial.print("Refill	seed,	seed_value=");

	 				}

	 				else

	 				{

	 								XBeeSerial.println("seedOK");

	 								Serial.print("Seed	refilled,	seed_value=");

	 				}

	 				Serial.println(seed_value);

	 }

	
	 void	loop()	{

	 				//	wait	a	second	each	loop	iteration

	 				delay(1000);

	
	 				//	poll	foil	perch	value

	 				perch_value	=		foil_sensor.capSense(CAP_SENSE);

	
	 				//	poll	photocell	value	for	seeds

	 				seed_value	=		analogRead(PHOTOCELL_SENSOR);

	
	 				switch	(perch_state)

	 				{

	 				case	0:	//	no	bird	currently	on	the	perch

	 								if	(perch_value	>=	ON_PERCH)

	 								{

	 												perch_state	=	1;

	 												SendPerchAlert(perch_value,	perch_state);

	 								}

	 								break;

	
	 				case	1:	//	bird	currently	on	the	perch

	 								if	(perch_value	<	ON_PERCH)

	 								{

	 												perch_state	=	0;

	 												SendPerchAlert(perch_value,	perch_state);

	 								}

	 								break;

	 				}

	
	 				switch	(seed_state)

	 				{

	 				case	0:	//	bird	feeder	seed	filled

	 								if	(seed_value	>=	SEED)

	 								{

	 												seed_state	=	1;

	 												SendSeedAlert(seed_value,	seed_state);

	 								}

	 								break;

	
	 				case	1:	//	bird	feeder	seed	empty

	 								if	(seed_value	<	SEED)

	 								{

	 												seed_state	=	0;

	 												SendSeedAlert(seed_value,	seed_state);

	 								}

	 								break;

	 				}

	 }

Note	the	references	to	the	capacitive	sensing	and	new	software	serial	libraries	at
the	beginning	of	the	sketch.	We	initialize	the	variables	that	will	use	references
from	those	libraries	along	with	our	threshold	variables.	Then	we	set	up	the
connections	to	the	serial	window	and	XBee	radio	along	with	the	Arduino
onboard	LED	on	pin	13.	Once	initialized,	the	program	simply	runs	a	loop	and

waits	for	the	perch	or	seed	thresholds	to	be	exceeded	or	reset.	If	a	change
condition	is	detected,	the	running	sketch	will	transmit	these	trigger	messages	to
the	Arduino	IDE’s	serial	window	as	well	as	to	the	XBee	radio.

With	both	the	foil	and	photocells	correctly	reporting	their	values,	redirect	serial
output	from	the	Arduino	IDE	serial	window	to	the	XBee	attached	to	the
Arduino.	Open	up	the	serial	application	window	to	the	FTDI-connected	XBee,
and	if	all	goes	well,	the	data	you	saw	being	displayed	in	the	Arduino	IDE	serial
window	should	now	be	showing	up	in	the	FTDI-connected	serial	application
window	on	your	computer.	Isn’t	wireless	communication	cool?

At	this	point,	the	hardware	for	our	project	is	connected	and	tested	and	may	look
similar	to	the	bird	feeder	components	I	assembled	in	Figure	15,	A	pet	bird	can
help	out	with	the	testing	and	debugging	of	threshold	values	that	trigger	perch
landing	and	departure	events.

Figure	15.	A	pet	bird	can	help	out	with	the	testing	and	debugging	of
threshold	values	that	trigger	perch	landing	and	departure	events.

But	before	we	start	packing	the	hardware	into	the	bird	feeder,	we	need	to	create
one	more	crucial	component.	Using	the	Python	language,	we	can	write	a	short
program	that	will	listen	for	bird	landings,	poll	for	seed	status,	and	post	notable
changes	to	Twitter.	Let’s	go	write	some	code.

5.6	Tweeting	with	Python
A	number	of	different	languages	capable	of	accomplishing	the	tasks	of
monitoring	and	interpreting	incoming	serial	console	messages	and	transmitting
outbound	messages	to	the	serial	port	exist.	There	are	also	a	number	of	Twitter
libraries	for	various	programming	languages.

Python	was	chosen	for	this	and	several	other	scripts	in	the	book	due	to	the
language’s

easy-to-follow	syntax,	its	default	inclusion	in	Linux	and	Mac	OS	X	operating
systems,	and	its	“batteries	included”	approach	to	bundling	a	number	of	relevant
libraries	(such	as	SQLite)	in	its	base	distribution.	To	learn	more	about
programming	in	Python,	check	out	Learning	Python	[LA03].

For	this	project,	the	basic	functionality	we	need	the	tweetingbirdfeeder.py	Python
script	to	accomplish	is	this:

1.	 Record	the	date	and	time	when	a	bird	lands	and	departs	from	the	perch	in
the	birdfeeding	table	in	the	tweetingbirdfeeder	database.

2.	 Record	the	date	and	time	when	seed	levels	are	depleted	and	replenished	in
the	seedstatus	table,	which	is	also	part	of	the	tweetingbirdfeeder	database.

3.	 Listen	for	inbound	and	transmit	outbound	serial	messages	via	the	FTDI
cable-connected	XBee	radio	and	respond	to	events	by	storing	the	date	and
time	of	their	occurrence	and	condition.

4.	 Connect	to	Twitter	via	OAuth	authentication	and	post	changes	in	bird
feeding	and	seed	level	status.

The	only	additional	Python	libraries	that	need	to	be	installed	for	this	project	are
pyserial	and	python-twitter.

Beyond	relaying	tweets	to	a	designated	Twitter	account,	it	would	be	helpful	to

visualize	trends	in	the	data	we	will	be	tweeting,	such	as	the	frequency	and
date/time	of	bird	landings	and	the	average	time	between	seed	refills.	We	can	then
see	how	these	trends	map	out	over	an	hour,	a	day,	a	month,	and	a	year.	To	do
this,	we	will	need	to	capture	the	data	in	a	structured	format.

Configure	the	Database
Since	Python	2.5	and	higher	supports	the	SQLite	database	out	of	the	box,	and
because	our	data	needs	don’t	require	an	overengineered	standalone	database
server,	SQLite	is	the	ideal	choice	for	the	job.	While	we	could	have	dumped	these
values	to	a	plain-text	comma	separated	value	(CSV)	file,	organizing	the	data	into
a	structured	SQLite	file	affords	us	two	benefits:	First,	we	will	be	better	prepared
for	future	data	analysis	queries.	Second,	we	will	have	greater	flexibility	to
capture	and	manage	other	types	of	data	events	later	on	simply	by	adding	new
columns	to	the	table.

In	order	to	create	a	database	in	sqlite3	file	format,	we	can	use	the	sqlite3
command-line	tool.	This	tool	is	already	installed	on	Mac	OS	X.	On	Linux,	it	will
most	likely	need	to	be	retrieved	from	the	distribution’s	repository.	In	the	case	of
Debian-based	distributions	like	Ubuntu,	issuing	sudo	apt-get	install	sqlite3	libsqlite3-
dev	should	install	the	application.	Windows	users	will	need	to	download	the
sqlite3.exe	utility	from	the	SQLite	website.[51]

Once	installed,	type	sqlite3	within	a	terminal	window.	This	will	display
something	like	the	following:

	 SQLite	version	3.7.6

	 Enter	".help"	for	instructions

	 Enter	SQL	statements	terminated	with	a	";"

	 sqlite>

Your	installation	of	SQLite	may	report	a	different	version	number.

Next,	we	will	enter	the	SQL	statement	to	create	our	new	database.	To	do	so,	exit
the	sqlite	command	shell	by	typing	.q	followed	by	a	carriage	return	at	the	sqlite>
prompt.	Then	relaunch	the	sqlite3	tool,	followed	by	the	name	of	the	database	to

be	opened.

For	this	project,	we	will	call	the	database	tweetingbirdfeeder,	with	the	filename
tweetingbirdfeeder.sqlite.	Because	this	database	file	does	not	yet	exist,	SQLite	will
automatically	create	the	file	for	us.	The	database	file	will	be	created	from	the
same	directory	that	you	launched	the	sqlite3	tool	from.	For	example,	if	you
launched	sqlite3	from	your	home	directory,	the	database	file	will	be	created	there.

SQLite	Manager
While	the	SQLite	command-line	tools	provide	all	you	need	to	create	and	manage
SQLite	databases,	it’s	sometimes	easier	to	work	with	a	graphic	user	interface.
This	is	especially	applicable	if	you	need	to	scroll	through	rows	of	data	in	a	single
window.	Several	open	source	GUI-based	SQLite	database	explorer-style	apps
exist.	If	you	are	a	Mozilla	Firefox	web	browser	user,	I	recommend	using	the	cross-
platform	SQLite	Manager	Firefox	plug-in.[52]

Installing	the	plug-in	is	easy.	From	the	Firefox’s	Tools→Add-ons	menu	selection,
search	for	SQLite	Manager	and	click	the	Install	button.	Open	SQLite	Manager
from	Firefox’s	Tools→SQLite	Manager	menu	option.	Creating	a	new	database	is	as
simple	as	clicking	on	the	New	Database	icon	in	the	SQLite	Manager	window
toolbar.	Saving	and	opening	SQLite	database	files	is	just	as	easy.

We	will	create	a	new	table	in	the	tweetingbirdfeeder.sqlite	database	that	we	will	call
birdfeeding	with	the	following	structure:

Column
Name

Data	Type Primary
Key?

Autoinc? Allow
Null?

Unique?

id INTEGER YES YES NO YES

time DATETIME NO NO NO NO

event TEXT NO NO NO NO

We	can	create	this	table	by	submitting	the	following	SQL	statement	to	the	sqlite

command-line	tool:

	 [~]$	sqlite3	tweetingbirdfeeder.sqlite

	 SQLite	version	3.7.6

	 Enter	".help"	for	instructions

	 Enter	SQL	statements	terminated	with	a	";"

	 sqlite>	CREATE	TABLE	"birdfeeding"	("id"	INTEGER	PRIMARY	KEY	NOT	NULL	UNIQUE,

	 "time"	DATETIME	NOT	NULL,"event"	TEXT	NOT	NULL);

With	the	birdfeeding	table	established,	we	need	another	table,	one	that	has	a
similar	structure	in	the	same	database	and	is	called	seedstatus:

Column
Name

Data	Type Primary
Key?

Autoinc? Allow
Null?

Unique?

id INTEGER YES YES NO YES

time DATETIME NO NO NO NO

event TEXT NO NO NO NO

Just	like	the	birdfeeding	table,	submitting	the	following	SQL	statement	to	the
sqlite	command-line	tool	will	generate	the	desired	structure	for	the	seedstatus
table:

	 [~]$	sqlite3	tweetingbirdfeeder.sqlite

	 SQLite	version	3.7.6

	 Enter	".help"	for	instructions

	 Enter	SQL	statements	terminated	with	a	";"

	 sqlite>	CREATE	TABLE	"seedstatus"	("id"	INTEGER	PRIMARY	KEY		NOT	NULL,

	 "time"	DATETIME	NOT	NULL	,"event"	TEXT	NOT	NULL);

Now	that	the	database	has	been	defined,	we	can	work	on	the	code	to	import	the
database	and	Serial	and	Twitter	libraries,	then	listen	for	serial	events	being
generated	and	timestamp	and	store	these	events	to	the	appropriate	database	table.

We’ll	conclude	the	event	capture	by	posting	a	tweet	of	the	situation.	But	before
you	can	programmatically	tweet	to	Twitter,	you	need	to	create	a	Twitter	account

and	sign	up	for	a	Twitter	API	key	and	related	OAuth	credentials.	Let’s	go	get
ourselves	an	API	key.

Twitter	API	Credentials
Before	sending	tweets	to	Twitter,	you	need	a	Twitter	account	to	send	them	to.
And	before	you	send	tweets	to	Twitter	programmatically	via	a	language	or
library	that	supports	OAuth,[53]	you	need	to	create	an	application	identifier	for
the	intended	Twitter	account.	While	you	could	use	an	existing	Twitter	account,	I
prefer	creating	new	accounts	whenever	a	new	project	demands	it.	That	way,
followers	of	my	existing	account	are	not	accosted	by	tweets	of	my	latest
experiments.	It	also	offers	a	way	to	share	your	application’s	tweets	selectively.
With	these	considerations	in	mind,	create	a	new	account	and	application	ID
specifically	for	the	bird	feeder	project.

Using	your	new	Twitter	account	credentials,	visit	http://dev.twitter.com	and
select	the	“Register	an	app”	option.	On	the	New	Twitter	Application	page,	enter
a	unique	name	for	your	application,	a	description	at	least	ten	characters	long,	and
a	valid	website	for	the	app.	Enter	a	temporary	one	if	you	don’t	have	a	permanent
website	from	which	you	will	offer	your	application	for	download.	Then	select
Client	under	Application	Type	and	select	Read	&	Write	under	Default	Access
type.	You	can	upload	a	custom	icon	if	you	like,	but	it’s	not	required.	Then	enter
the	CAPTCHA	validation	and	click	the	Register	Application	button	at	the
bottom	of	the	screen.	Read	and	accept	the	Twitter	API	Terms	of	Service	to
proceed.

Once	your	request	has	been	approved,	a	unique	API	Key,	OAuth	Consumer	key,
and	Consumer	secret	will	be	generated.	Click	the	My	Access	Token	menu	item
on	the	right	side	of	the	page	to	access	your	application’s	all	important	Access
Token	(oauth_token)	and	super-secret	Access	Token	Secret
(oauth_token_secret).	Copy	these	unique	codes	and	store	them	in	a	safe,	secure
file.	You	will	need	these	values	to	programmatically	interact	with	your	new
Twitter	account.	Remember	to	keep	these	values	a	secret!	You	don’t	want	any
unscrupulous	individuals	getting	hold	of	your	secret	token	and	using	it	to	spam
your	friends	and	raise	the	ire	of	the	Twitter	community.

http://dev.twitter.com

With	a	Twitter	account	and	a	valid	application	API	key	in	hand,	you	can	use
these	credentials	in	our	Python-based	Tweeting	Bird	Feeder	application.

The	Python-Twitter	Library
Even	though	we	have	API	access	to	Twitter,	we	still	need	to	talk	to	Twitter	from
Python.	We	can	do	so	with	help	a	little	help	from	the	Python-Twitter	library.[54]
To	install	both	the	Pyserial	and	Python-Twitter	libraries,	download	the	latest
version	and	execute	the	standard	sudo	python	setup.py	install	command.	If	you’re
installing	this	library	on	Mac	OS	X	10.6	(Snow	Leopard)	or	higher,	the
easy_install	Python	setup	tool	is	preinstalled.	However,	due	to	quirks	in	the	64-bit
libraries,	you	will	need	to	precede	the	command	with	an	i386	architecture	flag	to
install	the	Python-Twitter	library	without	errors.	The	complete	command	for	this
is	sudo	env	ARCHFLAGS="-arch	i386"	easy_install	python-twitter.

At	last,	we	have	all	the	accounts	configured	and	dependencies	installed,	and	we
can	complete	the	project	by	writing	the	Python	script	that	will	listen	for
messages	on	the	receiving	XBee	radio	serial	port,	timestamp	the	messages,	save
them	in	a	database,	and	post	the	message	to	Twitter.	Let’s	write	the	Python	script
that	will	codify	this	process.

TweetingBirdFeeder/tweetingbirdfeeder.py
	 #	import	DateTime,	Serial	port,	SQLite3	and	Twitter	python	libraries

	 from	datetime	import	datetime

	 import	serial

	 import	sqlite3

	 import	twitter

	
	 #	import	the	os	module	to	clear	the	terminal	window	at	start	of	the	program

	 #	windows	uses	"cls"	while	Linux	and	OS	X	use	the	"clear"	command

	 import	os

	 if	sys.platform	==	"win32":

	 				os.system("cls")

	 else:

	 				os.system("clear")

	
	 #	Connect	to	the	serial	port,	replacing	YOUR_SERIAL_DEVICE	with	the

	 #	name	of	the	serial	port	of	the	FTDI	cable-attached	XBee	adapter

	 XBeePort	=	serial.Serial('devtty.YOUR_SERIAL_DEVICE',	\

http://media.pragprog.com/titles/mrhome/code/TweetingBirdFeeder/tweetingbirdfeeder.py

	 																								baudrate	=	9600,	timeout	=	1)

	
	 #	Connect	to	SQLite	database	file

	 sqlconnection	=	sqlite3.connect("tweetingbirdfeeder.sqlite3")

	
	 #	create	database	cursor

	 sqlcursor	=	sqlconnection.cursor()

	
	 #	Initialize	Twitter	API	object

	 api	=	twitter.Api('Your_OAuth_Consumer_Key',	'Your_OAuth_Consumer_Secret',	\

	 								'Your_OAuth_Access_Token',	'Your_OAuth_Access_Token_Secret')

	
	 def	transmit(msg):

	 				#	Get	current	date	and	time	and	format	it	accordingly

	 				timestamp	=	datetime.now().strftime("%Y-%m-%d	%H:%M:%S")

	
	 				#	Determine	message	and	assign	response	parameters

	 				if	msg	==	"arrived":

	 								tweet	=	"A	bird	has	landed	on	the	perch!"

	 								table	=	"birdfeeding"

	 				if	msg	==	"departed":

	 								tweet	=	"A	bird	has	left	the	perch!"

	 								table	=	"birdfeeding"

	 				if	msg	==	"refill":

	 								tweet	=	"The	feeder	is	empty."

	 								table	=	"seedstatus"

	 				if	msg	==	"seedOK":

	 								tweet	=	"The	feeder	has	been	refilled	with	seed."

	 								table	=	"seedstatus"

	
	 				print	"%s	-	%s"	%	(timestamp.strftime("%Y-%m-%d	%H:%M:%S"),	tweet)

	
	 				#	Store	the	event	in	the	SQLite	database	file

	 				try:

	 								sqlstatement	=	"INSERT	INTO	%s	(id,	time,	event)	\

	 								VALUES(NULL,	\"%s\",	\"%s\")"	%	(table,	timestamp,	msg)

	 								sqlcursor.execute(sqlstatement)

	 								sqlconnection.commit()

	 				except:

	 								print	"Could	not	store	event	to	the	database."

	 								pass

	
	 				#	Post	message	to	Twitter

	 				try:

	 								status	=	api.PostUpdate(msg)

	 				except:

	 								print	"Could	not	post	Tweet	to	Twitter"

	 								pass

	
	 #	Main	program	loop

	 try:

	 				while	1:

	 								#	listen	for	inbound	characters	from	the	feeder-mounted	XBee	radio

	 								message	=	XBeePort.readline()

	
	 								#	Depending	on	the	type	of	message	is	received,

	 								#	log	and	tweet	it	accordingly

	 								if	"arrived"	in	message:

	 												transmit("arrived")

	
	 								if	"departed"	in	message:

	 												transmit("departed")

	
	 								if	"refill"	in	message:

	 												transmit("refill")

	
	 								if	"seedOK"	in	message:

	 												transmit("seedOK")

	
	 except	KeyboardInterrupt:

	 				#	Exit	the	program	when	the	Control-C	keyboard	interrupt	been	detected

	 				print("\nQuitting	the	Tweeting	Bird	Feeder	Listener	Program.\n")

	 				sqlcursor.close()

	 				pass

Once	the	necessary	datetime,	serial,	sqlite,	and	twitter	libraries	are	loaded,	we	clear
the	terminal	window	(sending	a	cls	for	Windows	and	a	clear	for	any	other
operating	system),	connect	to	the	receiving	XBee	radio	serial	port	(the	XBee	that
is	attached	to	the	computer	via	the	FTDI	cable).	Then	we	connect	to	the
tweetingbirdfeeder.sqlite3	database	file	we	created	earlier	and	run	an	infinite	while
loop	until	the	Control-C	keyboard	combination	is	triggered	so	we	can	gracefully
exit	the	program.	If	the	attached	XBee	radio	receives	a	message	it	recognizes,
we	call	the	def	transmit(msg)	function	that	parses	the	msg	variable,	adds	descriptive
text	to	the	event,	saves	the	message	to	the	database,	and	posts	it	to	Twitter.

With	the	Arduino	running	and	the	XBee	radios	paired	and	powered,	test	the

threshold	detections	by	touching	the	perch	sensor	and	photocell	enough	times	to
trigger	several	event	transmissions.	Assuming	no	errors	were	reported	in	the
terminal	window	of	the	running	script,	open	the	tweetingbirdfeeder.sqlite3	file	in	the
SQLite	Manager’s	Browse	and	Search	window	and	verify	that	entries	for	both
sensors	were	timestamped	when	the	related	events	were	triggered.	If	everything
checks	out,	log	into	the	Twitter	account	that	you	used	to	post	the	events	and
verify	that	the	events	appear	on	the	timeline.

We’re	almost	done.	Just	a	few	more	hardware	assembly	steps	remain.

5.7	Putting	It	All	Together
In	order	to	make	the	project	fully	functional,	we	need	to	package	up	the
Arduino+XBee	hardware	assembly	inside	a	weatherized,	protected	layer	within
the	bird	feeder,	mount	the	photocell	near	the	base	of	the	feeder,	fill	the	feeder
with	seed,	attach	the	Arduino+XBee	hardware	to	a	power	source,	and	place	the
feeder	outdoors	but	within	range	of	the	paired	XBee	radio	attached	to	the
computer.

Unless	you	live	in	an	area	with	little	rainfall,	you	will	need	to	protect	the
electrical	assembly	from	water	damage.	I	have	found	double	bagging	the
components	in	a	small	plastic	freezer	bag	does	a	sufficient	job	of
weatherproofing	the	Arduino+XBee.	However,	unless	you	plan	on	powering	the
electronics	with	a	9V	battery	that	can	be	contained	within	the	bundle	(it	might	be
good	for	short	data	collection	sessions	but	won’t	last	very	long	before	its	charge
is	exhausted),	you	will	need	to	account	for	an	external	cord	to	attach	to	the
Arduino	so	that	continuous	power	can	be	delivered.

Cutting	a	small	opening	in	the	bag	to	allow	the	cable	to	enter	works,	but	doing
so	exposes	the	insides	to	potential	moisture	condensation.	To	minimize	this	risk,
tightly	wrap	the	freezer	bag	and	cable	exit	point	with	a	continuous	sheet	of
plastic	wrap,	climbing	high	enough	up	the	power	cord	to	ensure	a	good	seal	that
won’t	slip	or	loosen	with	weather	changes.

Using	a	weatherized	power	cord	(such	as	those	sold	for	outdoor	decorative
lighting	purposes)	may	be	less	expensive	and	easier	to	test	in	the	short	term.
However,	environmentally	conscious	individuals	may	prefer	instead	to	spend	a
bit	more	money	up	front	for	a	longer,	more	sustainable	energy	alternative	in	the
form	of	a	photovoltaic	power	supply.

When	searching	for	an	adequate,	portable	solar	power	solution,	make	sure	it	can
deliver	5	volts,	is	built	for	rugged	durability,	and	has	a	built-in	rechargeable
battery	when	backup	power	is	needed.	Products	like	the	Solio	Bolt	provide	a
relatively	inexpensive	solution	for	short-term	measurements.[55]	If	you	prefer

photovoltaic	solutions	that	offer	greater	internal	battery	charging	capacities	and
voltage,	be	prepared	to	spend	a	bit	more	for	the	added	capabilities.	Companies
like	Sunforce	Products	offer	a	variety	of	solar	backup	power	maintainers,	trickle
chargers,	and	controllers	designed	to	take	on	greater	loads.[56]

You	should	mount	the	solar	panel	far	enough	away	from	the	feeder	to	gain
maximum	sun	exposure.	If	possible,	mount	the	panel	at	a	ninety-degree	angle	to
the	sun	for	optimal	energy	capture.	Depending	on	your	location	and	average
level	of	daylight	intensity,	you	may	need	to	seek	alternatives	such	as	consumer-
grade	wind	turbine	chargers	or	even	pedal-powered	dynamos.

We	have	accomplished	quite	a	number	of	new	objectives	this	project,	from	using
photocell	and	homemade	sensors	and	learning	how	to	pair	and	wirelessly
communicate	between	XBee-attached	hardware	to	writing	a	script	that	records
structured	data,	responds	to	events,	and	submits	posts	to	Twitter	via	Twitter’s
API.	We	have	also	taken	into	account	standalone	Arduino+XBee	radio	energy
requirements	and	ways	to	adequately	shield	our	electronics	from	environmental
changes.

We	will	reuse	these	valuable	lessons	with	some	of	the	other	projects	in	the
ensuing	chapters.

5.8	Next	Steps
The	variety	of	home	automation	projects	using	capacitive	and	photocell	sensor
notifications	is	expansive.	Here	are	just	a	few	ideas	to	consider	pursuing:

Place	an	XBee+photocell-equipped	Arduino,	powered	by	a	rechargeable
battery	pack,	in	your	refrigerator	or	freezer	to	detect	how	often	and	how
long	the	doors	are	left	open.	Use	this	data	to	calculate	energy	expended
each	month	as	a	result	of	these	encounters.	If	such	expenditures	are
excessive,	broadcast	emails	and/or	tweets	to	cohabitants	reminding	them	of
their	growing	carbon	footprint.

If	groping	for	a	light	switch	is	a	frustratingly	frequent	chore,	tweak	the
capacitive	sensor	configuration	to	be	used	to	turn	on	basement	or	garage
lights	by	touching	foil	tacked	to	a	wall	or	to	a	table-mounted	surface.

Use	the	variable	analog	readings	of	a	photocell	to	measure	day-night	cycles
and	sunny-overcast	recordings	and	map	these	to	seasonal	gardening	data.
Did	planting	certain	species	of	flowers,	fruits,	or	vegetables	before	a	certain
time	help	or	hinder	their	growth?	How	many	days	were	the	plants	bathed	in
full	sunlight	compared	to	overcast	or	inclement	skies?

In	addition	to	these	suggestions,	there	is	still	plenty	of	data	analysis	that	can	be
done	with	the	collected	bird	feeder	data.	Use	a	Python	graphing	library	like
CairoPlot	to	help	visualize	the	average	duration	of	and	time	in	between	bird
visits.[57]	How	quickly	was	seed	consumed?	How	much	of	an	effect	did	weather
have	on	feeding	times	and	durations?	Does	changing	the	type	of	seed	alter	the
duration	and	frequency	of	visits?

Consider	sharing	your	tweets	with	other	bird	enthusiasts	online	to	expand	a
social	network	of	others	collecting	and	sharing	their	bird	feeder	data.
Collectively	compare	patterns	across	various	regions	and	geographies	to	infer
population	trends,	environmental	impacts,	migration	cycles,	and	other	factors	to
better	understand	the	habits	of	our	feathered	friends.

Footnotes

[43] http://www.makershed.com/ProductDetails.asp?ProductCode=MKGR1

[44] http://www.adafruit.com

[45] http://www.solio.com/chargers/

[46] http://www.arduino.cc/playground/Main/CapSense

[47] http://www.ladyada.net/learn/sensors/cds.html.

[48] http://www.ladyada.net/make/xbee/

[49] http://ladyada.net/make/xbee/point2point.html

[50] http://alioth.debian.org/projects/minicom/

[51] http://www.sqlite.org/download.html

[52] https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/

[53] http://oauth.net/

[54] http://code.google.com/p/python-twitter/

[55] http://www.solio.com/chargers/

[56] http://www.sunforceproducts.com/results.php?CAT_ID=1

[57] http://cairoplot.sourceforge.net/

Copyright	©	2012,	The	Pragmatic	Bookshelf.

http://www.makershed.com/ProductDetails.asp?ProductCode=MKGR1
http://www.adafruit.com
http://www.solio.com/chargers/
http://www.arduino.cc/playground/Main/CapSense
http://www.ladyada.net/learn/sensors/cds.html
http://www.ladyada.net/make/xbee/
http://ladyada.net/make/xbee/point2point.html
http://alioth.debian.org/projects/minicom/
http://www.sqlite.org/download.html
https://addons.mozilla.org/en-US/firefox/addon/sqlite-manager/
http://oauth.net/
http://code.google.com/p/python-twitter/
http://www.solio.com/chargers/
http://www.sunforceproducts.com/results.php?CAT_ID=1
http://cairoplot.sourceforge.net/

Chapter	6

Package	Delivery	Detector
There	is	nothing	like	that	surge	of	anticipation	when	coming	home	after	a	long
day	to	discover	a	package	delivery	resting	outside	the	front	door.	Even	if	it	was	a
package	you	were	expecting	and	tracked	online	with	every	departure	hub,	seeing
that	parcel	safely	awaiting	your	arrival	can	sometimes	feel	like	receiving	a
birthday	gift.

Wouldn’t	it	be	even	more	comforting	to	know	the	very	moment	when	your
package	arrived	versus	waiting	up	to	hours	later	for	an	email	from	the	courier
confirming	the	delivery?	(See	Figure	16,	Receive	an	email	from	your	home
whenever	a	package	arrives)	What	if	the	driver	accidentally	delivered	the
package	to	the	wrong	location?	Say	goodbye	to	those	worries.	The	Package
Delivery	Detector	will	send	you	an	email	when	a	package	is	left	at	your
doorstep.	You	can	further	filter	the	notification	by	delaying	the	message	until	the
shipper	confirms	delivery	via	its	web	services.

Figure	16.	Receive	an	email	from	your	home	whenever	a	package	arrives.

This	project	combines	the	components	we	used	in	Chapter	5,	Tweeting	Bird
Feeder,	with	a	similar	alert	monitoring	mechanism	used	in	Chapter	4,	Electric
Guard	Dog.	Instead	of	using	a	PIR,	the	Package	Delivery	Detector	will	sense
deliveries	with	a	force	sensitive	resistor.	When	a	box	approximating	the	weight
of	a	small	package	(or	about	half	a	kilogram)	is	dropped	on	top	of	a	delivery	pad
containing	a	force	sensitive	resistor,	the	sensor	sends	a	notification	via	an	XBee-
connected	serial	port.	In	turn,	this	notification	processes	a	Python	script	that	logs
the	delivery	and	sends	an	email	notification.	Optionally,	the	delivery	notification
can	wait	an	hour	and	confirm	delivery	with	the	courier’s	website	before
transmitting	the	verified	message.

6.1	What	You	Need
Most	of	what	you	need	to	build	this	project	has	been	used	by	other	projects	in
the	book,	with	the	exception	of	a	force	sensitive	resistor	(sometimes	erroneously
referred	to	as	a	pressure	sensor).	Take	a	look	at	the	complete	list	of	the	project’s
components	(refer	to	the	photo	in	Figure	17,	Package	Delivery	Detector	parts):

Figure	17.	Package	Delivery	Detector	parts

1.	 An	Arduino	Diecimila,	Nano,	or	Uno

2.	 Paired	XBee	radios	and	accompanying	FTDI	cable

3.	 One	10k	ohm	resistor

4.	 A	force	sensitive	resistor,[58]	as	shown	in	the	photo	in	Figure	18,	Package

Delivery	Detector	resistors,	along	with	a	10k	ohm	resistor[59]

5.	 A	9-volt	power	supply	to	power	the	Arduino	once	untethered	from	the	USB
development	cable

6.	 Two	wood	or	plastic	square	tiles,	preferably	connected	together	via	a	wedge
on	one	side

7.	 A	computer	(not	pictured),	preferably	Linux	or	Mac-based,	with	Python	2.6
or	higher	installed	to	process	incoming	messages	and	interrogate	popular
logistics	firms’	web	services

Figure	18.	Package	Delivery	Detector	resistors

Depending	on	the	type	of	Arduino	that	you	opt	to	use	for	this	project,	you	will
also	need	a	standard	A	to	B	or	A	to	Mini-B	USB	cable	to	connect	the	Arduino	to
the	computer.

If	you	have	built	the	other	projects	in	this	book	up	to	this	point,	the	Package
Delivery	Detector	is	going	to	be	a	relatively	easy	project	to	construct.	This	is
because	it’s	essentially	a	variation	of	the	Chapter	5,	Tweeting	Bird	Feeder.
Instead	of	a	light	sensor,	this	project	will	use	a	strategically	placed	force
sensitive	resistor.	And	we	will	enhance	the	bird	feeder	Python	script	to	poll	a
popular	courier	delivery	service.	Doing	so	will	help	certify	the	authenticity	of
the	delivery.	Let’s	get	started!

6.2	Building	the	Solution
The	hardware	construction	for	this	project	closely	matches	the	sensor	approach
we	built	for	the	Tweeting	Bird	Feeder	project.	We	will	once	again	call	upon	the
Python	language	to	script	the	server-centric	interactions,	but	this	script	will	also
utilize	several	custom	packages	to	interrogate	popular	web	services	offered	by
US-based	courier	companies	like	Federal	Express	(FedEx)	and	United	Parcel
Service	(UPS).	More	specifically,	we	will:

1.	 Attach	the	force	sensitive	resistor	to	an	available	analog	pin	on	the	Arduino
and	identify	a	threshold	value	when	weight	is	applied	to	the	resistor.

2.	 Attach	the	XBee	radio	to	the	Arduino	and	transmit	a	message	to	another
XBee	radio	attached	to	a	computer	when	the	threshold	value	of	the	force
sensitive	resistor	has	been	exceeded.

3.	 When	a	threshold	event	has	been	received,	pause	execution	for	ten	minutes
to	give	the	courier’s	tracking	systems	an	opportunity	to	update	its	records.
Then	iterate	through	a	database	table	of	known	FedEx	and	UPS	in-transit
package	tracking	numbers.	Query	these	numbers	with	FedEx	and	UPS	web
services	to	determine	a	delivery	confirmation	match.

4.	 If	a	match	is	identified,	update	the	tracking	number	database	table	with	a
delivery	confirmation	and	date/time	stamp.

5.	 Send	an	email	via	Google’s	Gmail	SMTP	mail	gateway	indicating	the	time
of	the	threshold	event	and	any	packages	that	match	the	delivered	status
query.	If	no	tracking	number	is	matched,	indicate	such	in	the	body	of	the
email.

Now	let’s	begin	by	first	assembling	the	package	sensor	hardware	components,
followed	by	the	software	to	drive	it.

Figure	19.	The	Package	Delivery	Detector	wiring	diagram

6.3	Hardware	Assembly
If	you	already	constructed	the	Tweeting	Bird	Feeder	project,	you	know	how	to
connect	the	XBee	and	a	sensor	to	the	Arduino.	If	you	need	a	refresher,	refer	to
Section	5.5,	Going	Wireless.	Instead	of	attaching	the	light	sensor	with	the	inline
10k	ohm	resistor	to	the	Arduino’s	analog	pin,	we	are	going	to	swap	out	the	light
sensor	with	a	force	sensitive	resistor.	See	Figure	19,	The	Package	Delivery
Detector	wiring	diagram.	Wire	one	of	the	force	sensitive	resistor’s	leads	to	the
3.3v	power	source.	Connect	the	other	to	analog	pin	0.	Then	bridge	the	analog	0
wire	to	ground	with	a	10k	ohm	resistor.

The	XBee	radio	attaches	in	the	same	way	it	did	in	the	Tweeting	Bird	Feeder
project.	Namely,	connect	the	XBee’s	power	lead	to	the	Arduino’s	5.5v	output
pin.	Wire	the	XBee’s	ground	lead	to	the	other	available	ground	pin	on	the
Arduino.	Then	connect	the	XBee’s	receive	lead	to	the	Arduino’s	digital	pin	2	and
the	XBee’s	transmit	lead	to	the	Arduino’s	digital	pin	3.	Once	everything	is
connected,	it	should	look	something	like	Figure	20,	A	Package	Delivery
Detector.	Attach	the	USB	cable	from	the	computer	to	the	Arduino’s	USB	port	to
power	up	the	Arduino	so	we	can	write,	run,	and	debug	the	package	sensor
sketch.

Figure	20.	A	Package	Delivery	Detector

6.4	Writing	the	Code
There	are	two	code	components	in	this	project.	The	first	is	the	sketch	that
monitors	when	something	has	been	placed	on	the	force	sensitive	resistor	that	is
heavy	enough	to	exceed	the	normal	threshold.	When	that	occurs,	broadcast	the
event	along	with	the	value	of	the	force	resistor	resistor	via	the	XBee	soft	serial
port.

The	second	component	is	a	Python	script	that	waits	for	a	threshold	event	from
the	force	sensitive	resistor	monitor.	If	the	threshold	has	been	exceeded,	record
the	value	of	the	resistor	along	with	the	date	and	time	of	the	event	to	an	SQLite
database.	If	the	database	contains	a	list	of	known	tracking	numbers,	iterate
through	these	numbers	and	interrogate	FedEx	and	UPS	web	services	for	a	match.
Then	send	an	email	containing	information	about	the	delivery	event	as	well	as
the	courier’s	package	delivery	confirmation,	if	available.

6.5	The	Package	Delivery	Sketch
The	code	for	this	sketch	is	a	variation	of	the	code	we	wrote	for	the	Tweeting
Bird	Feeder.	One	of	the	neat	things	about	Arduino-centric	projects	is	once	you
have	written	a	sketch	for	a	sensor	or	an	actuator,	the	logic	and	syntax	for	the
sketch	can	frequently	be	reused.	After	all,	the	basic	principles	of	sensors	and
actuators	are	essentially	the	same—only	the	type	of	sensor	or	motor	hardware
and	values	have	changed.

Since	we	already	discussed	the	majority	of	the	code	in	this	sketch	from	the
Tweeting	Bird	Feeder	chapter,	we’re	not	going	to	spend	a	lot	of	time	reviewing
it.	But	the	one	variable	worth	mentioning	is	force_value.	Like	the	other	sensors	we
used	in	the	other	projects,	you	will	need	to	calibrate	the	force	sensitive	resistor
for	your	configuration	due	to	the	variety	of	force	sensitive	resistors	available,	the
type	of	wiring	and	voltages	used,	and	the	way	the	sensor	is	wedged	in	place.

PackageDeliveryDetector/PackageDeliveryDetector.pde
	 #include	<NewSoftSerial.h>

	
	 #define	FORCE_THRESHOLD	400

	 #define	ONBOARD_LED						13

	 #define	FORCE_SENSOR						0

	
	 //	Set	the	XBee	serial	transmit/receive	digital	pins

	 NewSoftSerial	XBeeSerial	=	NewSoftSerial(2,	3);

	 int	force_value		=	0;

	 byte	force_state	=	0;

	
	 void	setup()

	 {

	 				//	for	serial	window	debugging

	 				Serial.begin(9600);

	
	 				//	for	XBee	transmission

	 				XBeeSerial.begin(9600);

	
	 				//	set	pin	for	onboard	led

	 				pinMode(ONBOARD_LED,	OUTPUT);

	 }

http://media.pragprog.com/titles/mrhome/code/PackageDeliveryDetector/PackageDeliveryDetector.pde

	 void	SendDeliveryAlert(int	force_value,	int	force_state)

	 {

	 				digitalWrite(ONBOARD_LED,	force_state	?	HIGH	:	LOW);

	 				if	(force_state)

	 								Serial.print("Package	delivered,	force_value=");

	 				else

	 								Serial.print("Package	removed,	force_value=");

	 				Serial.println(force_value);

	 				XBeeSerial.println(force_value);

	 }

	 void	loop()

	 {

	 				//	wait	a	second	each	loop	iteration

	 				delay(1000);

	
	 				//	poll	FLEX_SENSOR	voltage

	 				force_value	=	analogRead(FORCE_SENSOR);

	
	 				switch	(force_state)

	 				{

	 				case	0:	//	check	if	package	was	delivered

	 								if	(force_value	>=	FORCE_THRESHOLD)

	 								{

	 												force_state	=	1;

	 												SendDeliveryAlert(force_value,	force_state);

	 								}

	 								break;

	
	 				case	1:	//	check	if	package	was	removed

	 								if	(force_value	<	FORCE_THRESHOLD)

	 								{

	 												force_state	=	0;

	 												SendDeliveryAlert(force_value,	force_state);

	 								}

	 								break;

	 				}

	 }

Even	though	the	basic	sketch	is	written,	we	still	need	to	test	the	sketch	on	the
Arduino	and	verify	that	the	force	sensitive	resistor	reacts	appropriately	to	weight
change	events.	We	also	need	to	ensure	that	the	XBee	radios	are	paired	with	each
other	and	are	passing	the	force	values	and	weight	messages	being	detected	on
the	Arduino’s	analog	pin	0.

6.6	Testing	the	Delivery	Sketch
Install	and	run	the	sketch	on	the	Arduino,	open	the	Arduino	IDE	serial	window,
and	pinch	the	force	sensitive	resistor	between	your	thumb	and	forefinger.	A
delivery	detection	should	register	on	the	serial	window.	Release	the	force
sensitive	resistor	and	wait	a	few	seconds.	The	serial	window	should	report	a
value	less	than	400,	followed	by	an	Empty	alert.	If	you	don’t	see	these	messages,
check	your	sensor	wiring.	You	may	also	need	to	increase	or	decrease	the
force_sensor_value	threshold	value	condition	to	address	any	jitter	or	unexpected
fluctuations	in	the	analog	readings	of	the	sensor.

Next,	make	sure	that	the	XBee	radios	are	connected	and	communicating	with
each	other.	Use	the	screen	command	that	was	mentioned	in	Chapter	5,	Tweeting
Bird	Feeder,	to	observe	the	inbound	messages	from	the	force	sensitive	resistor
when	it	is	squeezed.	The	information	being	transmitted	should	be	the	same	as
what	is	being	displayed	in	the	Arduino	IDE	serial	window.	Once	everything
checks	out,	we	can	write	a	Python	script	that	will	listen	for	inbound	XBee
messages	via	the	FTDI	cable	created--serial	port	and	act	on	them	accordingly.

6.7	The	Delivery	Processor
Once	again,	we’re	going	to	borrow	from	the	code	we	wrote	in	Chapter	5,
Tweeting	Bird	Feeder.	We’re	going	to	copy	the	serial	monitoring	and	SQLite
database	connectivity	instructions	and	enhance	the	script	with	additional
functionality.	First,	we’re	going	to	add	the	ability	to	scan	a	database	containing
known	tracking	numbers	of	packages	in	transit.	When	a	delivery	notification	is
received	via	the	XBee/FTDI	serial	port	connection,	we	will	wait	several	minutes
before	iterating	over	the	tracking	numbers	to	determine	which	package	was
delivered.	This	delay	can	sometimes	take	an	hour	or	more	with	some	couriers.	In
the	case	of	the	US	Post	Office,	it	can	take	up	to	a	day,	making	lookups	on	USPS
deliveries	impractical	for	our	more	immediate	needs.

After	scanning	and	polling	the	tracking	numbers	with	the	appropriate	courier’s
web	services,	we	will	add	any	courier	delivery	validation	information	to	our
delivery	notification	email	message.	If	an	error	occurs	with	the	tracking	number
lookup	or	if	there	were	no	confirmed	deliveries	of	the	tracking	numbers	we
iterated	upon,	we	will	say	that	in	the	body	of	the	message	as	well.

Finally,	we	will	use	Gmail	to	send	our	message	to	the	intended	recipient.	If	you
don’t	have	a	Gmail	account,	you	will	need	to	create	one	for	this	project.
Alternatively,	if	you	have	SMTP	outbound	mail	access	via	a	different	server,
you’re	welcome	to	substitute	Gmail’s	SMTP	gateway	with	your	own.	Before	we
can	write	any	Python	code,	though,	we	will	need	to	create	our	database
structures	to	store	delivery	events,	tracking	numbers,	package	descriptions,	and
confirmations.

6.8	Creating	the	Delivery	Database
We	need	to	create	two	tables	for	this	project.	The	first	will	store	both	the	history
of	force	sensitive	resistor	triggers	that	occur	when	packages	are	delivered	and
removed	as	well	as	the	value	of	the	exceeded	threshold	value.	The	second	table
will	store	known	tracking	numbers	of	inbound	package	deliveries	and	a	date
delivery	field	that	will	contain	the	time	and	date	of	when	the	delivery	was
confirmed	by	the	courier.	We’ve	done	something	like	this	before	in	Chapter	5,
Tweeting	Bird	Feeder,	so	we’ll	apply	that	same	approach	to	the	creation	of	the
package	delivery	database.

We	will	first	create	the	database	file	using	the	sqlite3	tool,	followed	by	the
creation	of	the	two	tables	within	the	packagedelivery	database.	Recall	that	we	need
to	capture	the	force	sensitive	resistor’s	trigger	actions	and	record	the	time	and
date	of	when	those	actions	take	place.	Here’s	the	structure	of	the	database:

Column
Name

Data	Type Primary
Key?

Autoinc? Allow
Null?

Unique?

id INTEGER YES YES NO YES
time DATETIME NO NO NO NO
event TEXT NO NO NO NO

Does	this	look	familiar?	Yes,	it’s	very	similar	to	the	structure	of	the	table	we
created	for	the	Tweeting	Bird	Feeder	project.	The	general	principles	are	the
same:	namely,	we	need	to	capture	an	event	and	record	when	it	occurred	in	a
structured	format.	This	time	the	event	is	when	a	package	arrives.

Create	this	table	by	submitting	the	following	SQL	statement	to	the	sqlite
command	line:

	 [~]$	sqlite3	packagedelivery.sqlite

	 SQLite	version	3.7.6

	 Enter	".help"	for	instructions

	 Enter	SQL	statements	terminated	with	a	";"

	 sqlite>	CREATE	TABLE	"deliverystatus"	("id"	INTEGER	PRIMARY	KEY	NOT	NULL	UNIQUE,

	 "time"	DATETIME	NOT	NULL,"event"	TEXT	NOT	NULL);

We	still	need	a	table	called	tracking	to	hold	assigned	tracking	numbers,	a
description	of	the	package	contents,	and	the	package’s	delivery	status	and	the
date	of	delivery	as	confirmed	by	the	courier’s	own	records.	The	structure	of	this
table	should	be	as	follows:

Column	Name Data	Type Primary
Key?

Autoinc? Allow
Null?

Unique?

id INTEGER YES YES NO YES
tracking_number TEXT NO NO NO NO
description TEXT NO NO NO NO
delivery_status BOOLEAN NO NO NO NO
delivery_date DATETIME NO NO NO NO

Run	the	following	SQL	statement	in	the	sqlite3	command-line	tool	to	create	this
second	table	structure	in	the	packagedelivery	database:

	 [~]$	sqlite3	packagedelivery.sqlite

	 SQLite	version	3.7.6

	 Enter	".help"	for	instructions

	 Enter	SQL	statements	terminated	with	a	";"

	 sqlite>	CREATE		TABLE	"tracking"	("id"	INTEGER	PRIMARY	KEY	NOT	NULL	UNIQUE,

	 "tracking_number"	TEXT	NOT	NULL,	"description"	TEXT	NOT	NULL,

	 "delivery_status"	BOOL	NOT	NULL,	"delivery_date"	DATETIME);

Now	that	our	database	tables	have	been	created,	we	can	proceed	with	the	next
step	of	obtaining	the	Python	package	dependencies	we	will	use	in	the	delivery
processor	script.

6.9	Installing	the	Package	Dependencies
To	make	it	easier	to	track	packages	being	handled	by	FedEx	or	UPS,	we	are
going	to	use	a	Python	package	called	packagetrack.	This	wrapper	helps	parse	the
XML-formatted	tracking	data	provided	by	the	courier’s	web	services,	making	it
much	easier	to	handle	the	data.	While	it	would	have	been	possible	to	use	a
Python	screen-scraping	library	like	Beautiful	Soup,	such	solutions	can	be	brittle.
Not	to	mention,	couriers	the	size	of	FedEx	and	UPS	offer	comprehensive	APIs
to	their	web	services	partially	to	discourage	screen	scrapers	from	data	harvesting
their	sites.	As	such,	before	installing	the	packagetracklibrary,	you	will	need	to	use
an	existing	UPS	and	FedEx	customer	account	to	sign	up	for	each	company’s
service	APIs.	If	you	do	not	already	have	a	customer	account	number	and	login,
you	will	need	to	visit	each	company’s	website	and	create	a	new	account.	The
account	creation	process	requires	a	valid	credit	card	number	(used	to	bill	for
parcel	shipping	charges).

With	a	valid	username,	password,	and	account	number	in	hand,	visit	each
company’s	respective	developer	portals	to	sign	up	for	a	production	web	service
API	key	(for	FedEx)	or	license	number	(for	UPS).	FedEx	will	also	generate
additional	security	credentials	(key	password	and	meter	number)	when	you
request	the	production	key.	You	will	need	these	values	to	call	the	respective
courier’s	web	service	APIs.

Next,	we	will	install	the	latest	packagetrack	package.	However,	instead	of
retrieving	it	via	the	simple	easy_install	Python	package	retrieval	and	installation
utility,	I	suggest	using	git	to	clone	a	fork	of	packagetrack	maintained	by	Michael
Stella.[60]	In	addition	to	Michael’s	packagetrack,	download	his	fork	of	its
dependency,	python-fedex,	which	fixes	a	parsing	issue	with	the	FedEx	XML
payload.[61]	The	python-fedex	package	also	relies	on	one	more	Python	library
dependency,	called	the	suds	library.	This	is	a	Simple	Object	Access	Protocol
(SOAP)	library	implementation	for	Python	that	python-fedex	uses	to	parse	the
SOAP	XML-wrapped	payload	received	by	the	FedEx	web	service.	Use	the	sudo
easy_install	suds	Python	command	to	automatically	download	and	install	the	suds

package.

Next,	install	both	the	python-fedex	and	packagetrack	packages	via	the	sudo	python
setup.py	install	command	in	the	terminal	window.	Ensure	that	the	packages	were
successfully	installed	by	launching	the	Python	interpreter	and	typing	python	in
the	terminal	window.	At	the	>>>	prompt,	type	import	packagetrack	and	hit	return.	If
no	error	messages	appeared,	you	installed	the	packages	correctly.

All	the	other	packages	we	will	call	upon	in	the	delivery	detector	script	are
included	with	the	standard	Python	2.5	or	higher	distribution.	With	the
packagetrack	dependencies	and	courier’s	web	service	API	key	requirements
satisfied,	we	are	ready	to	write	the	delivery	monitoring	script.

6.10	Writing	the	Script
The	package	delivery	monitoring	script	needs	to	perform	several	functions,	from
listening	for	and	reacting	to	triggers	from	the	package	delivery	monitoring
hardware	to	sending	an	email	alert	about	the	event	and	everything	in	between.
Specifically,	the	script	needs	to	do	the	following:

1.	 Listen	for	threshold	exceeded	events	(i.e.,	package	delivery	and	removal)
sent	via	the	soft	serial	port	communications	between	the	XBee	radios.

2.	 Timestamp	these	events	generated	by	the	force	sensitive	resistor	in	the
deliverystatus	table.

3.	 If	a	high	value	is	received	(i.e.,	a	package	is	delivered),	query	tracking
numbers	stored	in	the	tracking	table.	If	a	low	value	is	received	(i.e.,	a
package	is	removed),	send	an	email	alert	stating	such	and	return	execution
of	the	script	back	to	listening	for	delivery	events.

4.	 If	a	high	value	is	received,	wait	for	a	specified	time	before	querying	the
tracking	table	to	allow	time	for	the	courier	to	update	the	delivery	records.

5.	 Iterate	over	undelivered	tracking	numbers	and	poll	the	appropriate	courier’s
web	service	records	for	delivery	confirmation	status.

6.	 If	the	courier’s	web	service	results	report	a	delivery	confirmation,	change
the	status	of	the	tracking	number	record	in	the	local	tracking	database	table	to
1	(i.e.,	boolean	value	for	delivered).

7.	 Send	an	email	via	Gmail’s	secure	SMTP	gateway	that	contains	the	results	of
delivery	activity	in	the	body	of	the	message.	Note	that	you	will	need	login
access	to	an	active	Gmail	account	for	this	function	to	work.

8.	 Return	to	listening	for	additional	package	delivery	events.

With	those	steps	in	mind,	here’s	the	complete	script.

PackageDeliveryDetector/packagedeliverydetector.py
①	 from	datetime	import	datetime	

	 import	packagetrack

	 from	packagetrack	import	Package

	 import	serial

	 import	smtplib

	 import	sqlite3

	 import	time

	 import	os

	 import	sys

	 #	Connect	to	the	serial	port

	 XBeePort	=	serial.Serial('devtty.YOUR_SERIAL_DEVICE',	\

②	 		baudrate	=	9600,	timeout	=	1)	

	
③	 def	send_email(subject,	message):	

	 		recipient	=	'YOUR_EMAIL_RECIPIENT@DOMAIN.COM'

	 		gmail_sender	=	'YOUR_GMAIL_ACCOUNT_NAME@gmail.com'

	 		gmail_password	=	'YOUR_GMAIL_ACCOUNT_PASSWORD'

	
	 		#	Establish	secure	TLS	connection	to	Gmail	SMTP	gateway

	 		gmail_smtp	=	smtplib.SMTP('smtp.gmail.com',587)

	 		gmail_smtp.ehlo()

	 		gmail_smtp.starttls()

	 		gmail_smtp.ehlo

	
	 		#	Log	into	Gmail

	 		gmail_smtp.login(gmail_sender,	gmail_password)

	
	 		#	Format	message

	 		mail_header	=	'To:'	+	recipient	+	'\n'	+	'From:	'	+	gmail_sender	+	'\n'	\

	 						+	'Subject:	'	+	subject	+	'\n'

	 		message_body	=	message

	 		mail_message	=	mail_header	+	'\n	'	+	message_body	+	'	\n\n'

	
	 		#	Send	formatted	message

	 		gmail_smtp.sendmail(gmail_sender,	recipient,	mail_message)

	 		print("Message	sent")

	
	 		#	Close	connection

	 		gmail_smtp.close()

	
④	 def	process_message(msg):	

	 		try:

	 				#	Remember	to	use	the	full	correct	path	to	the

http://media.pragprog.com/titles/mrhome/code/PackageDeliveryDetector/packagedeliverydetector.py

	 				#	packagedelivery.sqlite	file

	 				connection	=	sqlite3.connect("packagedelivery.sqlite")

	 				cursor	=	connection.cursor()

	
	 				#	Get	current	date	and	time	and	format	it	accordingly

	 				timestamp	=	datetime.now().strftime("%Y-%m-%d	%H:%M:%S")

	
	 				sqlstatement	=	"INSERT	INTO	delivery	(id,	time,	event)	\

	 				VALUES(NULL,	\"%s\",	\"%s\")"	%	(timestamp,	msg)

	 				cursor.execute(sqlstatement)

	 				connection.commit()

	 				cursor.close()

	 		except:

	 				print("Problem	accessing	delivery	table	in	the	"	\

	 				+	"packagedelivery	database")

	
	 		if	(msg	==	"Delivery"):

	
	 				#	Wait	5	minutes	(300	seconds)	before	polling	the	various	couriers

	 				time.sleep(300)

	
	 				try:

	 						connection	=	sqlite3.connect("packagedelivery.sqlite")

	 						cursor	=	connection.cursor()

	 						cursor.execute('SELECT	*	FROM	tracking	WHERE	'\

	 						+	'delivery_status=0')

	 						results	=	cursor.fetchall()

	 						message	=	""

	
	 						for	x	in	results:

	 								tracking_number	=	str(x[1])

	 								description	=	str(x[2])

	 								print	tracking_number

	
	 								package	=	Package(tracking_number)

	 								info	=	package.track()

	 								delivery_status	=	info.status

	 								delivery_date	=	str(info.delivery_date)

	
	 								if	(delivery_status.lower()	==	'delivered'):

	 										sql_statement	=	'UPDATE	tracking	SET	\

	 										delivery_status	=	"1",	delivery_date	=	\

	 										"'	+	delivery_date	+	\

	 										'"	WHERE	tracking_number	=	"'	\

	 											+	tracking_number	+	'";'

	 										cursor.execute(sql_statement)

	 										connection.commit()

	 										message	=	message	+	description	\

	 										+	'	item	with	tracking	number	'	\

	 										+	tracking_number	\

	 										+	'	was	delivered	on	'	\

	 										+	delivery_date	+'\n\n'

	
	 						#	Close	the	cursor

	 						cursor.close()

	
	 						#	If	delivery	confirmation	has	been	made,	send	an	email

	 						if	(len(message)	>	0):

	 								print	message

	 								send_email('Package	Delivery	Confirmation',	message)

	 						else:

	 								send_email('Package	Delivery	Detected',	'A	'	\

	 								+	'package	delivery	event	was	detected,	'	\

	 								+	'but	no	packages	with	un-confirmed	'	\

	 								+	'delivery	tracking	numbers	in	the	database	'	\

	 								+	'were	able	to	be	confirmed	delivered	by	'	\

	 								+	'the	courier	at	this	time.')

	 				except:

	 						print("Problem	accessing	tracking	table	in	the	"	\

	 						+	"packagedelivery	database")

	
	 		else:

	 				send_email('Package(s)	Removed',	'Package	removal	detected.')

	
⑤	 if	sys.platform	==	"win32":	

	 				os.system("cls")

	 else:

	 				os.system("clear")

	
	 print("Package	Delivery	Detector	running...\n")

	 try:

	 		while	1:

	 				#	listen	for	inbound	characters	from	the	XBee	radio

	 				XBee_message	=	XBeePort.readline()

	
	 				#	Depending	on	the	type	of	delivery	message	received,

	 				#	log	and	lookup	accordingly

	 				if	"Delivery"	in	XBee_message:

	 						#	Get	current	date	and	time	and	format	it	accordingly

	 						timestamp	=	datetime.now().strftime("%Y-%m-%d	%H:%M:%S")

①

②

③

④

	 						print("Delivery	event	detected	-	"	+	timestamp)

	 						process_message("Delivery")

	
	 				if	"Empty"	in	XBee_message:

	 						#	Get	current	date	and	time	and	format	it	accordingly

	 						timestamp	=	datetime.now().strftime("%Y-%m-%d	%H:%M:%S")

	 						print("Parcel	removal	event	detected	-	"	+	timestamp)

	 						process_message("Empty")

	
⑥	 except	KeyboardInterrupt:	

	 		print("\nQuitting	the	Package	Delivery	Detector.\n")

	 		pass

Begin	by	importing	the	script’s	dependencies	on	the	custom	packagetrack
library	along	with	the	serial,	smtplib,	sqlite3,	time,	os,	and	sys	standard	Python
libraries.

Identify	the	serial	port	of	the	XBee	radio	attached	to	the	computer’s	serial
port.	This	radio	will	listen	for	incoming	transmissions	from	the	paired	XBee
radio	attached	to	the	Arduino	connected	to	the	force	sensitive	resistor.
Replace	the	’devtty.YOUR_SERIAL_DEVICE’	placeholder	with	the	actual	path	of	the
your	XBee	radio’s	attached	serial	port	value.

This	is	the	send_mail	routine	that	is	used	in	the	process_message	routine,	and
thus	it	needs	to	be	declared	first.	Replace	the	recipient,	gmail_sender,	and
gmail_password	placeholder	values	with	your	desired	recipient	and	Gmail
account	credentials.

The	process_message	routine	is	where	most	of	the	action	happens	in	the	script.
Connect	to	the	packagedelivery.sqlite	SQLite	database	and	log	the	type	of	event
received.	If	a	delivery	message	is	received,	the	script	waits	for	five	minutes
before	polling	the	FedEx	and	UPS	web	services	to	give	the	shipper	enough
time	to	log	the	delivery	status	to	the	central	servers.	Then,	the	tracking	table	in
the	packagedelivery.sqlite	database	is	queried	for	any	undelivered	tracking
numbers.	These	numbers	are	submitted	one	at	a	time	to	the	respective	web
service.	If	a	delivery	confirmation	is	returned,	its	positive	response	is	logged
to	the	database	with	the	confirmed	delivery	date,	as	well	as	appended	to	the

⑤

⑥

body	of	the	email	message	to	be	sent	via	the	send_email	routine.

This	is	the	main	loop	of	the	script.	Begin	by	clearing	the	screen	and	listening
for	a	“Delivery”	or	“Empty”	message	from	the	Arduino-attached	XBee	radio
and	invoke	the	process_message	routine.

Gracefully	exit	the	script	if	a	Ctrl-C	keypress	is	detected.

Save	the	script	as	packagedelivery.py	and	execute	it	with	the	python	packagedelivery.py
command.	If	any	errors	arise,	check	syntax	and	codeline	indentations,	since
Python	is	very	strict	about	line	formatting.	If	the	script	starts	up	without	any
complaints,	you’re	ready	to	test	it	out.

6.11	Testing	the	Delivery	Processor
With	the	Python	script	written	and	either	(or	both)	FedEx	and	UPS	customer
accounts	and	web	developer	API	keys	registered,	we	can	now	proceed	with
running	the	sketch	and	listener	script	through	a	functional	test.	Load	a	valid,
recent	FedEx	or	UPS	tracking	number	into	the	trackingstatus	table	in	the
packagedelivery	database.	To	do	this,	you	can	use	the	same	SQLite	Manager	plug-
in	for	Firefox	that	was	used	to	create	the	database	tables.	Simply	select	SQLite
Manager	from	Firefox’s	Tools	menu,	then	open	the	packagedelivery.sqlite	file.	Click
the	trackingstatus	table	listed	in	the	left	column	area,	followed	by	the	Browse	&
Search	tab.	Lastly,	click	the	Edit	button	to	add/modify	the	tracking	number
record(s).

Conversely,	if	you	prefer	the	faster	(though	less	visually	stimulating)	sqlite3
command-line	interface,	add	your	own	tracking	number(s)	via	the	following
SQL	statement	(remembering,	of	course,	to	replace	the	YOURTRACKINGNUM
placeholder	with	a	valid	FedEx	or	UPS	tracking	number):

	 sqlite>	INSERT	INTO	tracking("tracking_number","description","delivery_status")\

	 VALUES	("YOURTRACKINGNUM",	"My	Package	Being	Tracked","0");

Quickly	check	that	the	record	was	indeed	correctly	added	to	the	tracking	table
with	a	simple	select	statement:

	 sqlite>	select	*	from	tracking;

	 1|YOURTRACKINGNUM|My	Package	Being	Tracked|0|

Add	any	other	valid	FedEx	or	UPS	tracking	numbers	as	well	to	test	the	iterative
lookup	functionality	that	was	coded	into	the	Python	script.	For	the	purposes	of
this	test,	tracking	numbers	don’t	have	to	only	be	those	for	packages	in	transit.	In
fact,	it’s	best	to	have	a	mix	of	both	in-transit	and	delivered	packages	to	verify
that	the	script	correctly	updated	only	those	packages	with	tracking	numbers	that
have	a	confirmed	delivery	status.

The	moment	of	truth	has	arrived.	Power	up	the	Arduino/XBee	package	delivery

hardware.	Make	sure	the	receiving	XBee	is	plugged	into	your	computer	via	the
FTDI	cable	and	execute	the	python	packagedelivery.py	command.	Press	firmly	on
the	force	sensitive	resistor	and	wait	for	the	script	to	process	the	tracking	number
queries.	If	everything	worked	successfully,	you	should	have	received	an	email
from	the	Gmail	account	you	used	for	the	SMTP	gateway	that	listed	all	confirmed
package	deliveries.	You	can	also	execute	another	select	*	from	tracking;	query	from
the	sqlite3	command	line	to	verify	that	the	boolean	delivered	field	has	been
changed	from	0	(false)	to	1	(true),	and	that	the	appropriate	time	stamp
(indicating	when	the	package	was	actually	delivered)	was	recorded	in	the
deliver_time	field.

If	the	script	failed	or	if	the	values	were	not	properly	stored,	reset	the	records	in
the	tracking	table	and	use	a	variety	of	debugging	approaches	with	the	script	(the
easiest	being	the	venerable	print()	function)	to	determine	where	problems	are
arising	in	the	script’s	execution.

Once	the	tests	have	successfully	and	repeatedly	passed,	we’re	ready	to	install	the
hardware	configuration	outdoors	in	a	convenient	location	close	to	a	power	outlet.

6.12	Setting	It	Up
First,	identify	an	appropriate	spot	to	place	the	pressure	plate.	Most	parcel
delivery	companies	drop	off	packages	at	a	resident’s	front	door,	just	off	to	the
left	or	right	side	so	as	not	to	block	the	entrance.	To	help	guide	to	placement	of
the	packages,	you	can	leave	a	note	or	sign	for	the	courier	to	specifically	drop
boxes	on	the	designated	rectangular	pressure	plate	we	built	for	the	project.

Better	yet,	use	or	build	a	container	with	a	lid	and	place	the	sensor-embedded
plate	on	the	bottom	of	the	container.	You	can	purchase	inexpensive,	sturdy,
water-resistant	containers	that	also	act	as	large	seats	when	the	top	lid	is	down.
With	a	little	extra	work,	you	can	place	the	Arduino	and	XBee	radio	in	a	hard-
shelled,	waterproof	enclosure	and	carefully	mount	the	assembly	to	the	inside	of
the	container.

Tuck	it	far	enough	to	the	side	so	that	it	does	not	obstruct	any	packages	that	might
forcibly	land	on	the	assembly	and	possibly	damage	the	electronics.	Post	a	note
asking	delivery	personnel	to	place	packages	in	the	container.	Depending	on	how
frequently	you	receive	parcels,	this	new	behavior	may	be	adopted	quickly	by
those	who	manage	the	routes	in	your	area.

Due	to	the	proximity	of	the	detector	to	the	front	entrance	of	the	home,	an
outdoor	power	outlet	should	be	easy	to	locate	and	use.	If	the	placement	of	your
assembled	detector	happens	to	be	in	direct	sunlight	for	most	of	the	day,	you	can
even	try	powering	the	electronics	via	a	solar	cell	battery	like	the	one
recommended	for	the	Tweeting	Bird	Feeder	project.

With	everything	set	up	and	powered,	test	out	the	detector	for	yourself.	Try	boxes
of	various	shapes,	sizes,	and	weights	to	see	how	the	configuration	reacts	to	each.
You	may	need	to	reposition	the	force	sensitive	resistor	to	achieve	a	consistent
trigger.	Adding	a	second	and	even	a	third	force	sensitive	resistor	will	also	greatly
improve	detection,	especially	for	smaller	packages	that	may	not	hit	the	center
sensor	plate.

Your	Package	Delivery	Detector	is	now	complete	and	ready	to	process
deliveries.	Place	orders	with	your	favorite	online	retailers	to	see	how	much	more
convenient	and	reassuring	it	is	to	know	that	an	anticipated	package	is	awaiting
your	retrieval	when	you	get	home.

6.13	Next	Steps
It	is	easy	to	extend	the	detector	beyond	package	delivery	notification.	Here	are	a
few	ideas	that	can	be	used	to	further	develop	the	concept.

The	current	design	is	limited	to	one	package	delivery	before	it	needs	to	be
reset.	Enhance	the	sketch	and	Python	script	to	account	for	multiple	package
deliveries	from	multiple	couriers.	For	instance,	if	a	courier	delivers	a
package	that	triggers	a	threshold	event,	set	a	new	threshold	value	such	that
another	delivery	can	be	detected	and	verified	before	you	retrieve	the	first
package.

When	the	force	sensitive	resistor’s	threshold	is	exceeded,	capture	a	photo	of
the	delivery	in	progress	and	send	it	as	an	attachment	with	the	delivery	email
confirmation.

Enhance	the	database	portion	of	the	Python	script	to	store	the	results	of	the
package	delivery	query	and	write	a	web	front	end	in	Django	to	use	as	a
package	delivery	history	tool.

Place	the	force	sensitive	resistor	under	your	front	doormat	and	be	alerted
when	a	visitor	comes	calling	before	the	doorbell	rings.	To	remotely	unlock
the	door	for	trusted	individuals,	combine	with	a	webcam	and	an	electric
lock	from	Chapter	9,	Android	Door	Lock.

If	you	frequently	receive	packages,	employ	message	notification
alternatives	beyond	email	and	Twitter.	Write	a	package	delivery	notification
service	for	Android	or	an	iMessage-enabled	delivery	app	for	iOS	that	will
natively	alert	you	about	package	arrivals.

Shrink	the	delivery	detector	assembly	with	the	same	Arduino	Nano/XBee
configuration	used	in	Chapter	5,	Tweeting	Bird	Feeder.	Swap	out	the	force
sensitive	resistor	with	a	PIR	to	notify	you	when	a	hand	reaches	into	your
mailbox.

Combine	the	detector	with	the	guard	dog	from	Chapter	4,	Electric	Guard
Dog.	Use	the	force	sensitive	resistor	to	notify	the	guard	dog	to	power	up
and	look	for	movement.	Combine	with	a	laser	and	range	finder	to
accurately	“paint	the	target”	to	greet	visitors	with	a	high-tech	welcome.

Footnotes

[58] http://www.adafruit.com/products/166

[59]
Sparkfun	offers	a	square	resistor	that	provides	even	greater	surface
area:http://www.sparkfun.com/products/9376.

[60] https://github.com/alertedsnake/packagetrack

[61] https://github.com/alertedsnake/python-fedex

Copyright	©	2012,	The	Pragmatic	Bookshelf.

http://www.adafruit.com/products/166
http://www.sparkfun.com/products/9376
https://github.com/alertedsnake/packagetrack
https://github.com/alertedsnake/python-fedex

Chapter	7

WebEnabled	Light	Switch
Imagine	coming	home	after	a	long	day	at	work	and	being	able	to	power	on
lights,	televisions,	and	appliances	simultaneously	from	a	native	control
application	running	on	your	mobile	phone.	Any	electrical	device	with	a	standard
power	plug	can	be	a	part	of	this	vision.

We’re	going	to	make	that	vision	a	reality	with	the	help	of	a	networked	computer,
a	Ruby	on	Rails	web	application,	a	native	Android	phone	application,	and	an
older	home	automation	technology	known	as	X10.	We	will	build	a	native	remote
light	switch	Android	application	that	can	turn	lights	on	and	off	with	the	touch	of
an	onscreen	toggle	switch	(Figure	21,	Easily	control	your	home's	lighting	and
electrical	appliances).	When	we’re	finished,	we’ll	have	the	ability	not	only	to
control	appliances	nearby	but	also	anywhere	there	is	an	Internet	connection,
should	we	decide	to	make	the	Rails	server	publicly	accessible.

Figure	21.	Easily	control	your	home’s	lighting	and	electrical	appliances
...from	your	own	custom	smartphone	application.

7.1	What	You	Need
X10	is	a	company	that	has	been	selling	its	proprietary	electrical	switches	for
many	years,	and	the	technology	has	changed	little	since	its	introduction	over
thirty	years	ago.	Yet	regardless	of	its	age,	X10	power	switches	are	still	a	primary
home	automation	technology,	mostly	because	they	are	inexpensive	and,	when
coupled	with	a	computer,	can	send	and	schedule	power	on/off	events.

Instead	of	relying	on	X10’s	rigid	and	proprietary	Windows-based	application	to
control	X10	devices,	we	are	going	to	use	a	freely	available	open	source	utility
called	Heyu.	Created	and	maintained	by	Daniel	Suthers	and	Charles	Sullivan,
Heyu	provides	a	command-line	interface	to	monitor	and	send	a	variety	of	X10
commands	to	the	CM11A.	These	instructions	will	then	be	relayed	to	the
specified	X10	switches.

For	this	project,	it	is	best	to	stick	with	the	Linux	or	Mac	operating	system,	since
they	can	easily	compile	the	source	code	without	modification.	Unfortunately,
there	is	no	native	port	of	Heyu	available	for	Windows,	and	none	is	planned
anytime	in	the	near	future.	If	you	are	using	Windows,	consider	running	a	Linux
distribution	in	a	virtual	machine	using	a	program	like	VirtualBox.[62]

You	will	need	the	following	parts	(refer	to	the	photo	in	Figure	22,	WebEnabled
Light	Switch	parts):

Figure	22.	WebEnabled	Light	Switch	parts

1.	 X10	CM11A	computer	interface[63]—note	that	unlike	the	serial	port-based
CM11A,	the	newer	X10	CM15A	model	connects	to	a	computer	via	USB
and	will	not	work	with	Heyu	software.	See	the	Heyu	FAQ	for	more	details.
[64]

2.	 X10	PLW01	standard	toggle	wall	switch

3.	 Serial	to	USB	interface	cable

4.	 An	Android	OS	phone	or	tablet	device	(used	to	run	the	WebEnabled	Light
Switch	client	application)

5.	 A	computer	(not	shown),	preferably	Linux	or	Mac-based,	with	Ruby	1.8.7
or	higher	installed

How	Does	X10	Work?
The	basic	premise	behind	X10	is	sending	unique	pulse	codes	over	existing
electrical	wiring	to	devices	capable	of	acting	on	those	codes.	Each	device	is
manually	set	to	its	own	unique	house	code	and	device	code,	H8	for	example.	To

activate	an	X10	power	switch,	this	unique	identifier	is	transmitted	from	a	control
interface	plugged	into	a	power	outlet.	Using	the	home’s	existing	electrical	wiring,
the	house	code	leaves	the	control	interface	as	a	series	of	pulses	that	traverses
over	the	wiring.	The	X10	device	that	is	set	to	the	target	code	recognizes	that	it	is
the	recipient	of	the	code	that	follows.

The	function	code	can	consist	of	a	simple	on	or	off	message	that	in	turn	triggers
the	relay	in	the	receiving	X10	module.	This	in	turn	switches	on	or	off	the	power
going	to	the	lamp	or	appliance	plugged	into	the	module.	Besides	the	basic	on
and	off	codes,	other	instructions	can	be	sent	as	well,	such	as	setting	a	light
dimmer	to	25	percent	or	even	turning	all	X10	devices	on	or	off	simultaneously.
For	a	more	comprehensive	explanation	and	a	list	of	these	codes,	visit	the	Heyu
website.[65]

Additionally,	you	will	need	the	following	software:

Heyu	2.9.3	or	higher[66]

Ruby	on	Rails	3.0	or	higher[67]

The	Eclipse	IDE[68]

The	Android	SDK	1.5	or	higher[69]

The	Android	Development	Tools	(ADK)	Plugin	for	Eclipse[70]

At	the	heart	of	any	computer-assisted	X10	setup	is	the	control	module.	The
module	provides	the	interface	between	the	transmission	of	instructions	to	X10
devices	as	well	as	for	the	notifications	of	triggers	(ex:	motion	detection)	from
X10	appliances	equipped	with	such	capabilities.	Several	of	these	interfaces	exist,
such	as	the	X10	Firecracker	(known	by	its	serial	number	as	the	CM17A)	or	the
original	X10	computer	interface,	the	CM11A.	Most	of	the	open	source	X10
automation	software	available	today	supports	both	of	these	and	other	interfaces,
but	I	find	the	CM11A	to	be	the	most	prevalent.	Hence,	I	recommend	using	the
CM11A	for	this	project.

With	the	required	hardware	and	software	in	hand,	let’s	take	a	look	at	how	we	are
going	to	combine	all	this	technology	to	make	it	turn	a	light	on	and	off	from	an

Android	smartphone	application.

7.2	Building	the	Solution
In	order	for	X10-managed	lights	and	appliances	to	be	remotely	controlled,	we
are	going	to	assemble	a	variety	of	separate	technologies	and	use	them	in	a
unified	way.	We	will	do	the	following:

1.	 Test	the	X10	computer	interface	and	modules	with	the	Heyu	application.

2.	 Create	a	Ruby	on	Rails	application	that	provides	a	web-based	front	end	to	a
subset	of	Heyu	commands.

3.	 Create	an	Android	mobile	application	that	will	communicate	with	the	Rails
application,	turning	the	light	on	and	off	via	a	native	onscreen	Android
toggle	switch	control.

Figure	23.	The	X10	CM11A	interface	controls	the	WebEnabled	Light
Switch.

We	will	start	by	hooking	up	the	X10	hardware	and	verifying	that	it	can	be
controlled	via	the	Heyu	application.

7.3	Hooking	It	Up
Plug	the	X10	CM11A	into	an	outlet	near	your	computer	so	that	its	interface	cable
is	within	reach	of	your	computer.	Because	the	CM11A	uses	a	9-pin	serial
connection,	you	will	need	a	USB-to-serial	adapter	and	the	appropriate	driver,
similar	to	the	illustration	shown	in	Figure	23,	The	X10	CM11A	interface	controls
the	WebEnabled	Light	Switch.	If	you	use	a	Mac	running	OS	version	10.6	or
higher,	you	can	download	the	PL-2303	driver	from	the	Prolific	website.[71]
Computers	running	the	latest	Linux	distributions	should	have	no	trouble
identifying	and	connecting	to	the	PL-2303	interface.

Next,	plug	the	USB-to-serial	adapter	into	a	USB	port	on	your	computer	and
attach	it	to	a	powered	CM11A	interface.	You’ll	need	to	interrogate	the	device	for
the	serial	port	that	the	operating	system	assigned	to	the	interface.	You	can	do	this
via	locating	the	appropriate	tty	device	file	in	the	/dev	directory	by	issuing	a	ls
devtty*	command	in	the	terminal	window.	Easier	still,	load	up	the	Arduino	IDE
and	select	the	Tools→Serial	Port	menu	option.	In	my	case,	the	device	name	of
the	CM11A	is	devtty.usbserial,	as	shown	in	Figure	24,	The	Arduino	Tools	menu
displaying	the	USB	serial	adapter	name.	Note	the	name	of	the	new	device	path
since	you	will	need	to	refer	to	it	in	the	Heyu	configuration	file.

Figure	24.	The	Arduino	Tools	menu	displaying	the	USB	serial	adapter
name

Now	that	the	CM11A	is	connected	to	and	recognized	by	your	computer,
download	the	Heyu	source	code	from	the	Heyu.org	website,	uncompress	the
tarball	via	the	tar	-zxvf	heyu-2.9.3.tar.gz	command.	Then,	perform	a
./Configure;make;make	install	cycle	to	install	the	compiled	application.	If	you	use	a
Mac,	you	need	to	have	the	Mac	developer	tools	installed	before	proceeding.[72]
If	you	are	using	a	Linux	computer,	make	sure	you	have	the	necessary	gcc
compile	and	make	tools	installed.	For	example,	if	you	are	using	a	Debian-based
Linux	distribution	like	Ubuntu,	issue	sudo	apt-get	install	build-essential	from	the
terminal	window	to	download	and	install	the	compiler	and	linker	tools.	Then,
execute	the	usual	./Configure,	make,	and	sudo	make	install	to	compile	the	source	and
install	the	heyu	executable	and	dependencies	on	your	computer.

Along	with	the	heyu	executable,	a	x10.conf	configuration	file	is	installed	in	the
etcheyu	directory.	Open	this	file	for	read-write	editing	(ex:	sudo	vi	etcheyu/x10.conf).

There	are	a	number	of	options	that	can	be	set	in	the	x10.conf	file,	but	the	one
we’re	most	concerned	with	now	is	the	serial	port	path	to	the	CM11A	that	you
identified	earlier.

	 #	Serial	port	to	which	the	CM11a	is	connected.	Default	is	devttyS0.

	 TTY					devtty.usbserial

Use	your	favorite	text	editor	to	enter	the	serial	port	value	that	matches	the
location	of	your	CM11A	device.	Save	the	file	and	test	the	settings	by	first
launching	the	Heyu	state	engine	via	a	terminal	window	with	the	command:

	 >	heyu	engine

If	no	errors	are	reported,	you’re	in	good	shape	since	the	engine	daemon	found
the	device	and	is	running	successfully	in	the	background.	You	can	also	try
entering	heyu	info	for	more	details	about	the	Heyu	configuration.	Now,	in	the
same	terminal	enter	this:

	 >	heyu	monitor

This	will	monitor	the	interaction	of	the	CM11A	with	other	X10	devices.
Assuming	you	have	set	the	housecode	of	the	PLW01	wall	switch	to	H3,	enter	this
command:

	 >	heyu	on	h3

That	should	turn	on	the	switch	and	complete	the	circuit	for	whatever	electrical
device	(such	as	a	ceiling	lamp)	it	is	routing	electricity	to.	You	should	also	see	the
terminal	window	running	the	Heyu	monitor	process	report	the	transmittal	of	the
command:

	 07/25	12:45:34		sndc	addr	unit							3	:	hu	H3		(_no_alias_)

	 07/25	12:45:34		sndc	func											On	:	hc	H

Turn	off	the	switch	by	issuing	an	off	command	to	the	H3	device:

	 >	heyu	off	h3

	 07/25	12:50:17		sndc	addr	unit							3	:	hu	H3		(_no_alias_)

	 07/25	12:50:18		sndc	func										Off	:	hc	H

If	these	commands	fail	to	turn	the	switch	on	and	off,	try	another	X10	module,
like	an	AM486	Appliance	module.	If	that	also	fails,	try	bringing	the	wall	switch
closer	to	the	X10	computer	interface,	preferably	on	the	same	room	wiring.	The
majority	of	issues	I	have	encountered	with	X10	projects	are	often	directly
associated	with	the	reliability	of	the	fire-and-forget	protocol	of	X10	itself.	If	you
suspect	the	problem	may	be	the	X10	hardware,	try	swapping	the	X10	device	in
question	with	replacement	hardware.	You	can	also	have	an	electrician	check	for
line	noise	or	electrical	wiring	issues	that	may	be	hindering	the	transmission	of
X10	pulses	from	the	CM11A	interface	to	the	accompanying	X10	modules.

X10	Problems
While	X10	is	the	most	prevalent	(and	most	advertised)	low-cost	home
automation	solution	available	today,	it	does	have	a	number	of	constraints.
Besides	the	problems	with	its	fire-and-forget	protocol	(i.e.,	X10	sends	out
messages	but	has	no	way	to	verify	whether	or	not	the	device	acknowledged	and
acted	upon	the	request),	the	other	big	problem	with	X10	is	its	use	of	home
electrical	wiring	to	propagate	its	signals.

Home	wiring	often	is	both	noisy	and	degrades	over	time.	Such	wiring
connectivity	can	be	exacerbated	by	X10	modules	plugged	into	surge-protecting
power	strips	and	other	line-conditioning	end	points	that	can	filter	out	the
intentional	fluctuations	that	X10	commands	dump	into	the	electrical	stream.
Depending	on	how	far	the	X10	signal	needs	to	travel,	additional	X10	modules
may	be	required	to	ensure	that	X10	commands	reach	their	intended	destination.
Yet	even	with	these	annoyances,	X10	remains	one	of	the	most	cost-effective	and
easiest	home	automation	solutions	to	implement.	Even	though	a	number	of
competing	alternatives	to	X10	have	been	introduced	over	the	thirty-plus	years
that	X10	has	been	commercially	available,	none	have	yet	matched	X10’s	low
cost	and	ease	of	implementation.

Once	the	computer	and	CM11A	are	talking	to	one	another	via	the	heyu
command-line	interface,	we	can	leverage	this	functionality	by	encapsulating	it
into	a	web	application.	This	way,	we	can	easily	access	and	control	X10	end
points	from	a	web	browser	and	ultimately	from	an	Android	application.

7.4	Writing	the	Code	for	the	Web	Client
For	the	Webenabled	light	switch,	we	will	create	a	simple	Ruby	on	Rails	project
to	manage	the	user	interface	interaction	first	via	a	web	browser.	We	won’t	spend
a	lot	of	time	on	the	user	interface,	though,	since	that	will	ultimately	be	the	job	of
the	custom	Android	application	we	will	create	after	the	web	interface	is
functionally	tested.

Rails	runs	optimally	on	Mac	or	Linux	computers,	and	it	is	already	installed	by
default	on	Mac	OS	X	10.6.	However,	it	is	not	the	latest	version.	Because	this
project	requires	Rails	3.0	or	higher,	the	instructions	are	not	applicable	to	older
versions	of	the	framework.	Follow	the	instructions	on	the	Ruby	on	Rails	website
to	get	the	latest	Rails	release	running	on	your	computer.

With	the	Rails	web	framework	installed,	create	a	new	directory	and	switch	to
that	directory	before	creating	the	new	Rails	project:

	 >	mkdir	~/projects/ruby/rails/homeprojects/

	 >	cd	~/projects/ruby/rails/homeprojects

	 >	rails	new	x10switch

	
	 						create

	 						create		README

	 						create		Rakefile

	 						create		config.ru

	 						create		.gitignore

	 						create		Gemfile

	 						create		app

	 						create		app/controllers/application_controller.rb

	 						create		app/helpers/application_helper.rb

	 						create		app/mailers

	 						create		app/models

	 						...

	 						create		vendor/plugins

	 						create		vendor/plugins/.gitkeep

Next,	change	into	the	new	x10switch	directory	and	create	a	new	controller	called
command	with	an	action	called	cmd	to	manage	the	interaction	between	the	web

interface	and	the	Heyu	terminal	application.

	 >	cd	x10switch

	 				>	rails	generate	controller	Command	cmd

	
	 										create		app/controllers/command_controller.rb

	 											route		get	"command/cmd"

	 										invoke		erb

	 										create				app/views/command

	 										create				app/viewscommandcmd.html.erb

	 										invoke		test_unit

	 										create				test/functional/command_controller_test.rb

	 										invoke		helper

	 										create				app/helpers/command_helper.rb

	 										invoke				test_unit

	 										create						test/unit/helpers/command_helper_test.rb

Then,	locate	the	app/controllers/command_controller.rb	file	and	check	for	the	on	and
off	parameters	and	execute	the	appropriate	action:

	 class	CommandController	<	ApplicationController

	 		def	cmd

	 				@result	=	params[:cmd]

	
	 				if	@result	==	"on"

	 						%x[/usr/local/bin/heyu	on	h3]

	 				end

	
	 				if	@result	==	"off"

	 						%x[/usr/local/bin/heyu	off	h3]

	 				end

	 		end

	 end

The	%x	is	a	Ruby	construct	to	execute	an	application	with	command-line
arguments.	Hence,	%x[/usr/local/bin/heyu	on	h3]	tells	Heyu	to	send	an	on	command
code	to	the	H3	house	code	X10	switch.	Likewise,	the	%x[/usr/local/bin/heyu	off	h3]
tells	that	same	switch	to	turn	off.

Next,	edit	the	app/viewscommandcmd.html.erb	document	and	replace	its	placeholder
contents	with	the	following	single	line	of	embedded	Ruby	code	to	display	the

results	of	the	On	and	Off	request:

	 The	light	should	now	be	<%=	@result	%>.

While	we	could	go	much	further	with	this	Rails	application,	dressing	it	up	with	a
nice	user-friendly	interface	accessed	from	the	public/index.html	file	as	well	as
providing	more	verbose	output	of	the	result	of	the	action,	I	will	leave	that
exercise	for	the	aspiring	reader.	Since	we	will	ultimately	be	controlling	the
switch	from	a	native	mobile	client	application,	there’s	little	incentive	to	invest
time	in	whipping	up	a	sparkly	web	UI	when	it	will	hardly	ever	be	seen.

Finally,	edit	the	config/routes.rb	file	and	replace	the	get	"command/cmd"	with	the
following:

	 match	"command:cmd",	:to	=>	'command#cmd'

This	instructs	the	Rails	application	on	how	to	route	incoming	command	requests
to	execute	the	on/off	actions.	Save	your	work	and	get	ready	to	rumble!

If	you’re	setting	up	a	newer	version	of	Rails	(such	as	Rails	3.1)	on	a	Linux
system,	you	may	also	need	to	install	a	few	package	dependencies	(or	gems	as
they’re	known	in	Ruby	parlance)	in	order	for	Rails	to	run.	Just	edit	the	Gemfile

file	that	was	generated	in	the	x10switch	directory	and	add	the	following:

	 gem	'execjs'

	 gem	'therubyracer'

Save	the	changes	and	then	run	this	command:

	 >	bundle	install

This	will	download	and	install	the	extra	files	used	by	the	Rails	3.1	JavaScript
processing	engine.	With	these	two	gems	successfully	installed,	you’re	ready	to
run	and	test	out	the	X10switch	Rails	application.

7.5	Testing	Out	the	Web	Client
With	the	X10	computer	interface	working	and	plugged	into	the	serial	port	of	the
computer,	fire	up	a	development	server	of	the	Rails	3	code	via	this:

	 >	cd	~/projects/ruby/rails/homprojects/x10switch

	 >	rails	s

	
	 =>	Booting	WEBrick

	 =>	Rails	3.0.5	application	starting	in	development	on	http://0.0.0.0:3000

	 =>	Call	with	-d	to	detach

	 =>	Ctrl-C	to	shutdown	server

	 [2011-03-18	16:49:31]	INFO		WEBrick	1.3.1

	 [2011-03-18	16:49:31]	INFO		ruby	1.8.7	(2009-06-12)	[universal-darwin10.0]

	 [2011-03-18	16:49:31]	INFO		WEBrick::HTTPServer#start:	pid=10313	port=3000

Open	a	web	browser	on	the	local	machine	and	enter	the	following:

http://localhost:3000/command/on

If	everything	is	coded	correctly,	you	should	see	The	light	should	now	be	on.	in	the
browser	window,	as	shown	in	Figure	25,	The	browser	should	indicate	the	proper
status	of	the	light.

Figure	25.	The	browser	should	indicate	the	proper	status	of	the	light.

More	importantly,	Heyu	should	have	executed	the	on	command	for	the	X10
device	coded	with	the	H3	house	code.	In	other	words,	the	light	should	have
turned	on.	Turn	the	light	off	by	submitting	the	off	command:

http://localhost:3000/command/off

http://localhost:3000/command/on
http://localhost:3000/command/off

If	the	light	turned	off,	congratulations!	You	have	wired	up	and	programmed
everything	correctly.	When	you’re	ready	to	expand	the	Rails	application	to
handle	even	more	commands,	just	add	more	if	@result	==	statements	to	the
CommandController	class	containing	the	command	you	want	Heyu	to	transmit.
These	commands	could	range	from	dimming	lights	to	30	percent,	turning	an
appliance	on	for	a	specified	duration,	or	managing	a	combination	of	power
on/off	events.

If	you’re	interested	in	learning	more	about	programming	web	applications	using
the	Ruby	on	Rails	framework,	check	out	Programming	Ruby:	The	Pragmatic
Programmer’s	Guide	[TFH09].

Now	that	the	web	application	server	is	working,	it’s	time	to	build	a	mobile	client.

7.6	Writing	the	Code	for	the	Android	Client
You	might	be	wondering	why	you	should	go	through	the	trouble	of	building	a
native	Android	client	when	the	web	application	we	wrote	can	be	accessed	by	the
Android	mobile	web	browser.	Well,	if	all	you	wanted	to	do	was	toggle	light
switches	on	and	off,	then	I	would	say	you	don’t	need	a	native	client.	The	web
interface	works	just	fine	and	can	be	further	enhanced	using	AJAX	and	slick
HTML5/CSS3	user	interface	effects.	But	if	you	want	to	give	a	little	more
intelligence	to	the	app,	such	as	activating	power	switches	based	on	your
proximity	to	them	or	running	an	Android	service	that	monitors	inbound	X10
events	like	motion	detection	and	then	sounds	an	alert	on	your	phone	to	bring
such	events	to	your	attention,	a	dynamic	web	page	just	won’t	do.

If	you	haven’t	already	done	so,	download,	install,	and	configure	the	Eclipse	IDE,
the	latest	Android	SDK,	and	the	ADK	plug-in	for	Eclipse.	Visit	the	Android
SDK	website	for	details	on	how	to	do	so.[73]

You	will	also	need	to	create	an	Android	Virtual	Device	(AVD)	so	that	you	can
use	it	to	test	the	client	application	in	an	Android	emulator	before	sending	the
program	to	your	Android	device.[74]	I	suggest	creating	an	AVD	that	targets
Android	1.5	(API	Level	3)	so	that	it	emulates	the	largest	number	of	Android
phones	available.

Launch	the	Eclipse	environment	and	select	File→New→Android	Project.
Depending	on	the	version	of	Eclipse	you	are	running,	this	option	might	also	be
found	on	the	File	menu	via	New->Other->Android->Android	Project.	Call	the
project	LightSwitch	and	select	Build	Target	as	Android	1.5.	You	can	choose	a
higher	Android	version	depending	on	what	level	of	Android	device	you	want	to
deploy	the	application	to,	but	since	the	LightSwitch	program	will	be	sweet	and
simple,	Android	1.5	should	be	adequate	for	this	sample	application.

In	the	Properties	area,	fill	in	the	Application	name	as	Light	Switch	and	the	Package
name	as	com.mysampleapp.lightswitch,	and	check	the	Create	Activity	checkbox	and
enter	LightSwitch.	You	can	specify	the	Min	SDK	Version	if	you	wish,	but	since

we’re	developing	for	one	of	the	more	popular	lowest-common-denominator
versions	of	Android,	we’ll	leave	it	blank	for	now.	Before	you	continue,	check	to
see	if	your	New	Android	Project	dialog	box	looks	like	the	one	shown	in	Figure
26,	Creating	a	new	Android	Project	dialog	box	with	completed	parameters.

Figure	26.	Creating	a	new	Android	Project	dialog	box	with	completed
parameters

Android	developers	with	good	testing	practices	would	then	click	the	Next	button
in	the	New	Android	Project	dialog	box	to	set	up	a	Test	Project	resource.
However,	in	the	interest	of	space	and	time,	we’ll	go	ahead	and	click	the	Finish
button.

Once	the	Android	Development	Tools	Eclipse	plug-in	generates	the	skeleton
Light	Switch	application	code,	double-click	the	main.xml	in	the	res/layout	folder	to
open	it	into	Android’s	simple	form	editor.	Drag	a	ToggleButton	control	from	the
Form	Widgets	palette	onto	the	main.xml	graphical	layout.	Don’t	worry	about
perfectly	aligning	the	control	in	the	right	spot	for	now.	For	this	exercise,	we’re
more	interested	in	function	over	form.

Figure	27.	The	graphical	form	layout	of	the	Light	Switch	application

Because	this	application	won’t	require	anything	beyond	the	basic	features	found
in	the	earlier	Android	operating	system	releases,	change	the	Android	version	in
the	upper	right	corner	drop-down	box	of	the	form	editor	to	Android	1.5.	Also,
feel	free	to	delete	the	default	Hello	world	TextView	element	from	the	layout.	When
done,	the	layout	should	look	similar	to	the	screen	shown	in	Figure	27,	The
graphical	form	layout	of	the	Light	Switch	application.	Save	the	main.xml	file.

Expand	the	src→com.mysampleapp.lightswitch	tree	and	double-click	the

LightSwitch.java	file.	Because	we	will	be	using	the	ToggleSwitch	widget,	the
first	thing	we	need	to	import	is	the	android.widget.ToggleButton	class.

Next,	add	the	java.net.URL	and	java.io.InputStream	libraries,	since	we’ll	be	creating
URL	objects	to	pass	to	Java	InputStream	object.	The	import	statement	section	of
the	LightSwitch.java	file	should	now	look	like	this:

	 package	com.mysampleapp.lightswitch;

	 import	android.app.Activity;

	 import	android.os.Bundle;

	 import	android.widget.ToggleButton;

	 import	android.view.View;

	 import	java.net.URL;

	 import	java.io.InputStream;

Now	we	have	to	make	the	LightSwitch	aware	of	the	ToggleSwitch	by	finding	it
by	ID	in	the	LightSwitch	class’s	OnCreate	event	and	adding	an	event	listener	to
monitor	when	the	switch	is	toggled	on	and	off:

	 public	class	LightSwitch	extends	Activity	{

	 		/**	Called	when	the	activity	is	first	created.	*/

	 				@Override

	 				public	void	onCreate(Bundle	savedInstanceState)	{

	 						super.onCreate(savedInstanceState);

	 						setContentView(R.layout.main);

	 						final	String	my_server_ip_address_and_port_number	=

	 								"192.168.1.100:3344";

	 						final	ToggleButton	toggleButton	=

	 												(ToggleButton)	findViewById(R.id.toggleButton1);

	 						toggleButton.setOnClickListener(new	View.OnClickListener()

	 						{

	 								public	void	onClick(View	v)	{

	 										if	(toggleButton.isChecked())	{

	 												try	{

	 																final	InputStream	is	=	new	URL("http://"+

	 my_server_ip_address_and_port_number	+"commandon").openStream();

	 																}

	 																catch	(Exception	e)	{

	 																}

	 										}	else	{

	 												try	{

	 																final	InputStream	is	=	new	URL("http://"+

	 my_server_ip_address_and_port_number	+"commandoff").openStream();

	 																}

	 																catch	(Exception	e)	{

	 																}

	 												}

	 										}

	 						});

	 				}

	 }

Be	sure	to	set	the	my_server_ip_address_and_port_number	string	in	the	example	above
to	the	IP	address	and	port	that	you	plan	to	use	to	run	the	Rails	application	server
we	wrote	in	Section	7.4,	Writing	the	Code	for	the	Web	Client.	And	that’s	it!	Go
ahead	and	run	the	application	in	the	Android	emulator	to	make	sure	it	compiles
and	shows	up	on	the	screen	correctly.

7.7	Testing	Out	the	Android	Client
Time	to	test	out	the	application	on	a	real	X10	light	switch.	Assuming	the	Rails-
based	X10	web	application	is	working	as	expected,	start	up	your	Rails
development	server	on	the	same	network/subnet	as	the	emulator	in	Figure	28,
Running	the	Light	Switch	application.

Figure	28.	Running	the	Light	Switch	application

Use	the	same	port	number	as	the	one	we	assigned	in	the
my_server_ip_address_and_port_number	string	from	our	Android	application.	For
example,	in	the	case	of	192.168.1.100:3344,	the	IP	address	is	192.168.1.100	and	the
port	number	is	3344.	Pass	this	as	a	command-line	parameter	when	launching	the
Rails	server	instance,	like	this:

	 >	rails	s	-p3344

With	the	rails	development	server	now	running	on	port	3344	and	waiting	for
inbound	requests	on	the	same	local	area	network	as	your	Android	emulator	or
device,	click	the	On/Off	toggle	button.

Um,	nothing	happened.	Why?

There	is	one	more	important	setting	we	have	to	make	in	the	Light	Switch
application	configuration.	We	have	to	respect	the	Android	application	security
model	and	tell	the	Android	OS	that	we	want	to	allow	our	application	to	Use	the
Internet	so	that	we	can	have	our	outbound	HTTP	requests	reach	the	outside
world.	To	do	so,	double-click	the	AndroidManifest.xml	file	and	add	the	following
line	just	above	the	closing	manifest	tag,	like	this:

	 <uses-permission	android:name="android.permission.INTERNET"
>

	 </uses-permission>

The	entire	AndroidManifest.xml	file	should	now	look	like	this:

	 <?xml	version="1.0"	encoding="utf-8"?>

	 <manifest	xmlns:android="http://schemas.android.com/apk/res/android"

	 		package="com.mysampleapp.lightswitch"

	 		android:versionCode="1"

	 		android:versionName="1.0"
>

	 				<application	android:icon="@drawable/icon"

	 																					android:label="@string/app_name"
>

	 						<activity	android:name=".LightSwitch"

	 																android:label="@string/app_name"
>

	 								<intent-filter>

	 										<action	android:name="android.intent.action.MAIN"	/>

	 										<category	android:name="android.intent.category.LAUNCHER"	/>

	 								</intent-filter>

	 						</activity>

	 				</application>

	 				<uses-permission	android:name="android.permission.INTERNET"
>

	 				</uses-permission>

	 </manifest>

Recompile	and	run	the	Light	Switch	application	with	the	new	permission	setting

and	click	the	toggle	button.	If	everything	worked	as	planned,	you	should	see	the
Rails	server	report	something	similar	to	the	following	successfully	received
request:

	 Started	GET	"commandon"	for	192.168.1.101	at	Sat	Mar	21	19:48:10	-0500	2011

	 		Processing	by	CommandController#cmd	as	HTML

	 		Parameters:	{"cmd"=>"on"}

	 Rendered	command/cmd.html.erb	within	layouts/application	(11.7ms)

	 Completed	200	OK	in	53ms	(Views:	34.7ms	|	ActiveRecord:	0.0ms)

You	should	also	see	the	light	turn	on!	Click	the	toggle	button	again.	It	should
generate	a	similar	report	for	the	off	command:

	 Started	GET	"commandoff"	for	192.168.1.101	at	Sat	Mar	26	19:52:30	-0500	2011

	 		Processing	by	CommandController#cmd	as	HTML

	 		Parameters:	{"cmd"=>"off"}

	 Rendered	command/cmd.html.erb	within	layouts/application	(13.2ms)

	 Completed	200	OK	in	1623ms	(Views:	40.0ms	|	ActiveRecord:	0.0ms)

Consequently,	the	light	should	now	switch	off.

On	rare	occasions,	one	other	issue	you	may	encounter	when	you	attempt	to
install	the	Light	Switch	application	on	your	Android	phone	is	an	expired	debug
key.	Android’s	security	model	requires	a	signed	key	to	execute	code	on	an
Android	device.	The	signed	key	should	have	been	automatically	generated	and
configured	when	you	installed	the	Android	SDK,	but	in	the	event	that	an
expiration	message	occurs,	follow	the	signing	procedure	in	the	Android	SDK
documentation	to	generate	a	new	key.[75]

For	more	details	on	installing	Android	programs	onto	an	Android	device	from
the	Eclipse	environment,	review	the	Android	SDK	documentation	on	running
Android	applications	on	an	emulator	and	on	a	device.[76]

7.8	Next	Steps
Congratulations!	Now	that	you	can	control	a	lamp	or	appliance	via	a	graphical
toggle	switch	on	your	Android	phone,	a	whole	new	world	of	home	automation
possibilities	awaits.

You	could	continue	to	enhance	the	native	mobile	client	by	controlling	multiple
X10	switches	in	a	facile	and	elegant	manner	based	on	the	time	of	day	and	the
GPS	coordinates	of	your	mobile	device	(ex:	turn	on	the	porch	light	after	dark
when	you’re	within	a	five-meter	radius	of	the	front	door).	While	we	won’t	be
building	this	location-based	application	in	this	book,	you	have	the	basic	building
blocks	already	in	your	possession.	If	you’re	interested	in	going	further,	read	Ed
Burnette’s	Hello,	Android	[Bur10]	for	some	really	helpful	tutorials,	then	post
your	ideas	and	creations	on	the	Programming	Your	Home	website!

Several	other	improvements	can	be	made	to	the	configuration	to	make	the
system	more	robust	and	user	friendly.	These	include	the	following:

Improve	application	error	trapping	and	reporting.	X10	methods	are	“fire
and	forget”	events	that	do	not	inherently	return	success	or	failure.	As	such,
there	are	plenty	of	enhancements	that	can	be	made	to	the	web	service	to
troubleshoot	nearly	everything	else	up	to	the	point	of	X10	command
transmissions.	Before	sending	a	message,	trap	for	and	report	on	X10
computer	interface	connection	errors.	Knowing	that	the	X10	interface	is
down	is	far	more	helpful	than	seeing	no	action	from	the	switch	without	any
explanation	of	why.

Invest	in	several	more	X10	modules,	ranging	from	two-way	(LM14A)	and
the	Socket	Rocket	lamp	(LM15A)	to	wall	socket	(SR227)	and	heavy-duty
appliance	(HD243)	modules.	Send	Heyu	transmission	events
simultaneously	to	multiple	X10	devices.	For	example,	using	a	single
method	call,	turn	on	lights	in	the	kitchen;	power	up	the	toaster,	coffee
maker,	and	ceiling	fan;	and	report	back	to	the	mobile	client	when	coffee
will	be	brewed	and	a	toasted	bagel	will	be	ready.

If	you	prefer	a	more	lightweight	Ruby-based	web	framework,	consider
replacing	the	Ruby	on	Rails	server	application	with	one	using	Sinatra.[77]
While	it	hasn’t	yet	matched	the	popularity	of	Rails,	Sinatra	is	nevertheless	a
pretty	nifty	minimalist	Ruby-based	framework	that	is	worthy	of	a	closer
look.

Dress	up	the	mobile	user	interfaces	with	a	more	elegant,	multifunctional
front	end	that	can	be	used	for	multiple	webenabled	switches,	appliances,
garage	door	openers,	and	more.

Extend	functionality	to	other	projects,	such	as	an	Arduino-based	TV
remote,	or	link	together	interface	controls	to	other	projects	in	this	book,
such	as	Chapter	8,	Curtain	Automation,	and	Chapter	9,	Android	Door	Lock.

Footnotes

[62] https://www.virtualbox.org/

[63] http://www.x10.com

[64] http://www.heyu.org/heyu_faq.html

[65] http://www.heyu.org/docs/protocol.txt

[66] http://heyu.org

[67] http://www.rubyonrails.com

[68] http://eclipse.org

[69] http://developer.android.com/sdk

[70] http://developer.android.com/sdk/eclipse-adt.html

[71] http://www.prolific.com.tw/eng/downloads.asp?ID=31l.

https://www.virtualbox.org/
http://www.x10.com
http://www.heyu.org/heyu_faq.html
http://www.heyu.org/docs/protocol.txt
http://heyu.org
http://www.rubyonrails.com
http://eclipse.org
http://developer.android.com/sdk
http://developer.android.com/sdk/eclipse-adt.html
http://www.prolific.com.tw/eng/downloads.asp?ID=31l

[72] http://developer.apple.com/technologies/tools/

[73] http://developer.android.com/sdk

[74]
http://developer.android.com/guide/developing/devices/managing-
avds.html

[75] http://developer.android.com/guide/publishing/app-signing.html

[76]
http://developer.android.com/guide/developing/building/building-
eclipse.html

[77] http://www.sinatrarb.com/

Copyright	©	2012,	The	Pragmatic	Bookshelf.

http://developer.android.com/sdk
http://developer.android.com/guide/developing/devices/managing-avds.html
http://developer.android.com/guide/publishing/app-signing.html
http://developer.android.com/guide/developing/building/building-eclipse.html
http://www.sinatrarb.com/

Chapter	8

Curtain	Automation
One	of	the	more	frequent	effects	in	science	fiction	movies	about	home	life	is	the
autonomous	opening	and	closing	of	curtains	and	window	shades.	Well,	the	future
is	here	and	it’s	about	to	get	more	evenly	distributed.	In	this	project,	we	will
construct	a	system	that	will	open	and	close	curtains	based	on	light	and
temperature.	When	the	heat	goes	up,	the	curtains	close.	Likewise,	when	the	sun
comes	up,	the	curtains	open	(Figure	29,	Automate	curtains	and	shades).

To	bring	motion	to	this	solution,	our	primary	hardware	component	will	be	a
stepper	motor,	a	continuous	rotational	engine	that	will	be	driven	by	an	Arduino
to	spin	a	certain	number	of	revolutions	clockwise	and	counterclockwise.	When
the	shaft	of	the	stepper	motor	is	connected	to	a	curtain	string	and	pulley	system,
the	motor	will	open	and	close	the	curtains	accordingly.

Let’s	take	a	look	at	the	other	supplies	we	will	need	to	build	this	project.

Figure	29.	Automate	curtains	and	shades	...depending	on	light	and
temperature.

8.1	What	You	Need
The	parts	required	for	this	project	are	fairly	straightforward.	Sensors	for	light
and	temperature,	a	stepper	motor,	and	an	Arduino	board	are	the	primary
components.	Then	it’s	just	a	matter	of	mounting	and	powering	the	assembly.
Refer	to	the	photo	in	Figure	30,	Curtain	Automation	parts.	Specifically,	we	will
need	the	following:

1.	 Four	2-inch	angle	brackets	to	mount	the	stepper	motor	in	place

2.	 A	12V	bipolar	stepper	motor[78]

3.	 Arduino	motor	shield[79]

4.	 A	12V	power	supply[80]

5.	 Double-sided	foam	tape	to	dampen	the	vibration	of	the	mounted	stepper
motor

6.	 A	grooved	rubber	pulley	wheel	to	grip	and	move	the	curtain	drawstring

7.	 Wire	to	connect	the	sensors	and	stepper	motor	to	the	motor	shield

8.	 A	TMP36	analog	temperature	sensor	(for	a	close-up	image	of	a	photocell
and	a	temperature	sensor,	see	Figure	31,	Curtain	Automation	sensors)[81]

9.	 A	10k	ohm	resistor	(usually	coded	with	brown,	black,	orange,	and	gold
bands)

10.	 A	photoresistor	(the	same	type	we	used	in	Chapter	5,	Tweeting	Bird	Feeder)

11.	 An	Arduino	Uno

12.	 A	small	breadboard	to	mount	the	photocell	and	temperature	sensors

13.	 A	standard	A-B	USB	cable	(not	pictured)	to	connect	the	Arduino	to	the

computer.

Figure	30.	Curtain	Automation	parts

This	project	assumes	you	already	have	curtains	hung	on	a	pulley-based	system.
If	you	don’t	already	have	curtains	in	place,	there	are	a	number	of	how-to	sites	on
the	Web	to	assist	with	hanging	curtain	rods	and	setting	up	the	pulley	system.	The
project	works	best	with	the	continuous	drawstring,	traverse	rod-based	hanging
curtains.	That	is,	as	you	pull	down	on	the	left	side	of	the	string,	the	right	side
goes	up,	and	vice	versa.

Figure	31.	Curtain	Automation	sensors

You	will	also	need	find	the	size	of	pulley	wheel	that	best	suits	your	curtain
configuration.	For	simple	curtain	rod/drawstring-based	systems,	a	1-inch-
diameter	grooved	rubber	pulley	wheel	should	do	just	fine.	You	can	obtain	a
variety	of	pulley	wheel	sizes	from	home	hardware,	auto	parts,	and	even	some
craft	stores.

Ideally,	the	center	hole	of	the	pulley	wheel	should	snuggly	slip	onto	the	stepper
motor’s	drive	shaft	so	that	it	doesn’t	fall	off	or	slip	when	the	shaft	is	rotating.	If
you	have	a	home	improvement	store	nearby,	bring	your	stepper	motor	and	try	the
various	pulley	wheels	at	the	store	to	save	time	and	hassle.	Once	you’ve	found
the	perfect	size	and	fit,	you’re	ready	to	start	assembling	the	project.

8.2	Building	the	Solution
We	have	several	objectives	to	complete	for	our	project	to	work	as	intended.	First,
we	will	test	the	stepper	motor	by	writing	a	sketch	using	Adafruit’s	AFMotor

library.	This	assumes	that	you	have	already	constructed	the	motor	shield.	Follow
the	instructions	on	Adafruit’s	website	for	more	details	on	assembling	and	using
the	motor	shield.[82]

After	we	have	a	working	stepper	motor’s	drive	shaft	that	rotates	back	and	forth
based	on	the	instructions	we	have	the	Arduino	execute,	we	will	hook	up	the
photo	resistor.	We	will	borrow	from	the	same	light	sensor	routine	we	wrote	for
the	Chapter	5,	Tweeting	Bird	Feeder.	When	this	photosensor	detects	light	that
exceeds	the	threshold	we	establish,	the	stepper	motor	drive	shaft	will	spin
clockwise	for	a	predetermined	number	of	revolutions.	When	light	diminishes
below	the	low	threshold	value	that	we	set,	the	shaft	will	spin	the	same	number	of
revolutions	in	the	opposite	direction.	When	the	shaft	spins,	the	attached	pulley
will	open	or	close	the	curtain	accordingly.

In	addition	to	light	detection,	we	also	need	to	account	for	room	temperature	in
case	it	exceeds	a	certain	value.	If	the	room	starts	to	get	too	warm,	we	can	spin
the	drive	shaft	counterclockwise	to	close	the	curtain	even	when	there	is	daylight.
If	the	temperature	cools	off	to	a	comfortable	level	and	it’s	still	daylight,	the	shaft
will	spin	clockwise	to	reopen	the	curtains.

Once	our	detectors	are	working	and	tested,	we	will	attach	the	pulley	wheel	to	the
stepper	motor’s	drive	shaft.	Then	we	will	wrap	the	curtain	drawstring	around	it
and	determine	where	we	can	mount	the	stepper	motor/pulley	assembly	on	the
wall.	The	location	of	the	assembly	needs	to	keep	the	curtain	drawstring	taut
enough	so	that	it	will	not	slip	when	the	pulley	is	revolving.	Next	we	will
calibrate	the	number	of	revolutions	required	by	the	stepper	motor	to	open	and
close	the	curtain.	After	those	settings	are	determined,	we	can	increase	the	speed
(revolutions	per	minute)	of	the	stepper	motor	to	establish	how	quickly	or	slowly
the	curtain	should	open	or	close.

With	these	steps	in	mind,	let’s	first	take	a	look	at	how	we	can	write	a	sketch	that
will	control	the	stepper	motor.

8.3	Using	the	Stepper	Motor
Electrical	motors	work	on	the	principle	of	electromagnetism	to	drive	the	central
shafts.	As	the	magnetic	field	changes	around	the	coils	that	wrap	around	the	shaft,
the	change	in	current	propels	the	shaft	forward	or	backward.	Stepper	motors
refine	this	principle	by	allowing	granular	control	of	the	motor	to	“step”	in	well-
defined	increments.	This	makes	these	motors	excellent	choices	for	any
mechanical	task	requiring	precise	control.

Stepper	motors	are	used	in	ink	jet	printers,	plotters,	and	disk	drives;	they	are	also
found	in	a	number	of	types	of	industrial	manufacturing	equipment.

The	motor	we	will	use	for	this	project	is	a	popular	12-volt,	350-milliamp,	200-
steps	per	revolution	bipolar	stepper	motor.	This	motor	should	provide	enough
torque	to	move	all	but	the	heaviest	of	curtains.	Because	the	motor	pulls	12	volts
of	power,	it	will	need	to	operate	from	a	12-volt	power	supply	instead	of	the	5
volts	that	the	standalone	Arduino	board	can	deliver.	Fortunately,	the	Arduino
board	has	the	electronics	necessary	to	accept	a	12-volt	power	supply	that	can
power	the	Arduino,	the	motor	shield,	and	the	stepper	motor.

Assuming	that	you	have	already	built	a	working	Adafruit	motor	shield,	here	are
the	steps	needed	to	set	up	the	stepper	motor	for	programming:

1.	 Connect	the	four	wires	from	the	12-volt	bipolar	stepper	motor.	If	your
stepper	motor	is	the	recommended	one	from	Adafruit,	the	wiring	sequence
by	color	should	be	red,	yellow,	green,	brown.	Refer	to	the	photo	in	Figure
32,	Bipolar	stepper	motor	wiring.

2.	 Attach	the	motor	shield	to	the	top	of	the	Arduino	Uno.

3.	 Plug	the	12-volt	power	supply	into	the	Arduino	power	port.

4.	 Connect	a	USB	cable	from	the	computer	to	the	Arduino.

Figure	32.	Bipolar	stepper	motor	wiring

Now	that	the	hardware	is	connected,	we	can	focus	on	writing	an	Arduino	sketch
that	will	drive	the	stepper	motor.

8.4	Programming	the	Stepper	Motor
In	order	to	get	the	stepper	motor	to	work	the	way	we	want	it	to,	we	need	to
import	a	library	that	makes	it	easy	to	incrementally	rotate	the	motor’s	shaft	in
either	direction	at	the	speed	we	want	it	to	move.	Fortunately,	controlling	a
stepper	motor	is	easy	thanks	to	Adafruit’s	AFMotor	motor	shield	library.[83]	As
you	do	with	most	Arduino	libraries,	extract	the	downloaded	zip	file,	rename	the
extracted	folder	(AFMotor),	and	place	it	in	the	Arduino	libraries	folder.	For	more
details,	refer	to	Appendix	1,	Installing	Arduino	Libraries.

With	the	AFMotor	library	installed,	launch	the	Arduino	IDE.	Let’s	write	a	sketch
that	will	test	the	stepper	motor.	The	code	will	do	the	following:

1.	 Load	the	AFMotor	library.

2.	 Create	an	AFMotor	stepper	motor	object	and	set	the	stepper’s	connection
and	steps	per	revolution	(i.e.,	how	fast	the	stepper	motor’s	shaft	rotates).

3.	 Move	the	shaft	clockwise	and	counterclockwise	using	the	stepper	motor’s
two	coils.	By	the	way,	this	action	is	known	as	double-coil	activation,	and	it
produces	greater	torque	compared	to	using	just	a	single	coil	at	a	time.	We
will	need	that	extra	torque	to	move	the	curtain	string.

Here’s	what	the	completed	sketch	should	look	like:

CurtainAutomation/StepperTest.pde
	 #include	<AFMotor.h>

	
	 AF_Stepper	motor(48,	2);

	
	 void	setup()	{

	 		Serial.begin(9600);

	 		Serial.println("Starting	stepper	motor	test...");

	 		//	Use	setSpeed	to	alter	speed	of	rotation

	 		motor.setSpeed(20);

	 }

	

http://media.pragprog.com/titles/mrhome/code/CurtainAutomation/StepperTest.pde

	 void	loop()	{

	 		//	step()	function

	 		motor.step(100,	FORWARD,	DOUBLE);

	 		motor.step(100,	BACKWARD,	DOUBLE);

	
	 }

Note	that	this	test	code	is	essentially	a	subset	of	the	sample	code	available	from
Ladyada’s	motor	shield	web	page.[84]

Save	and	upload	the	sketch	to	the	Arduino.	If	all	goes	well,	your	stepper	motor
should	spin	clockwise	and	counterclockwise	until	you	remove	power	or	upload	a
new	sketch.	If	the	shaft	isn’t	moving,	make	sure	your	stepper	motor	wiring	is
properly	connected.	Also	make	sure	that	you	are	using	a	12-volt	power	supply
connected	to	the	Arduino,	since	the	motor	needs	that	amount	of	voltage	to	move.
If	you’re	having	a	hard	time	seeing	which	direction	the	shaft	is	rotating,	affix	a
small	piece	of	folded	tape	on	the	shaft.	It	should	be	easier	to	see	the	tape	flag
move	back	and	forth	as	the	shaft	moves.

Now	that	your	hardware	is	working,	it’s	time	to	add	the	temperature	and	light
sensors	to	give	the	stepper	motor	a	bit	more	relevance	to	its	intended	motion.

8.5	Adding	the	Sensors
It’s	time	to	combine	the	working	stepper	motor	with	the	photosensor	we	used	in
the	Chapter	5,	Tweeting	Bird	Feeder	project.	Photosensor	readings	will	be	taken
every	second,	and	depending	on	the	outdoor	light	levels,	they	will	trigger	the
stepper	motor	to	open	or	close	the	curtains.	We	will	also	add	a	temperature
sensor	so	that	we	don’t	open	the	curtains	if	it’s	already	too	warm	in	the	room	or
so	that	we	close	the	curtains	if	the	room	temperature	exceeds	a	predetermined
level.

Fortunately	for	this	type	of	project,	which	relies	on	the	analog	pins	to	measure
light	and	temperature,	the	motor	shield	does	not	use	any	of	the	Arduino’s	analog
pins.	Therefore,	we	will	attach	one	lead	of	the	photocell	to	the	5V	power	pin	and
the	other	lead	to	analog	pin	0.	And	just	like	the	Tweeting	Bird	Feeder	project,	we
need	to	bridge	the	10k	ohm	resistor	from	the	analog	pin	0	to	ground.	Using	a
breadboard	for	this	is	much	easier	than	wrapping	the	leads	in	series.	Plus,	the
breadboard	will	make	a	good	stand	to	keep	the	photocell	propped	up	and	angled
toward	the	outdoor	light.

The	temperature	sensor	has	three	leads:	the	first	will	connect	to	the	5V	power
pin,	the	temperature	sensor’s	middle	lead	will	connect	to	analog	pin	5,	and	the
third	(far	right)	lead	will	connect	to	the	ground	pin.	The	motor	shield	makes	this
easier.	Refer	to	Figure	33,	Curtain	Automation	stepper	motor	and	sensor	wiring
diagram,	for	setting	this	up.	Note	that	although	the	diagram	shows	an	Arduino,
the	wiring	will	actually	be	connecting	to	the	motor	shield	mounted	on	top	of	the
Arduino	(hence	the	wiring	on	the	side	for	the	stepper	motor	connection	as	well
as	the	wiring	to	analog	pin	5	and	the	ground	and	5V	pins	on	the	right	side	of	the
shield).

Figure	33.	Curtain	Automation	stepper	motor	and	sensor	wiring	diagram

We	will	poll	the	variable	values	of	these	two	sensors	every	second	and	react
accordingly	should	the	threshold	values	we	established	for	these	measurements
be	exceeded.	Let’s	write	the	sketch	that	will	do	just	that.

8.6	Writing	the	Sketch
The	sketch	for	this	project	borrows	from	ideas	we	encoded	in	two	other	projects.
The	sensor	readings	come	from	the	Tweeting	Bird	Feeder,	and	the	state	machine
for	the	open	or	closed	status	was	copied	from	the	Water	Level	Notifier.	As	such,
here	is	the	complete	sketch.

CurtainAutomation/CurtainAutomation.pde
①	 #include	<AFMotor.h>	

②	 		#define	LIGHT_PIN									0		

	 		#define	LIGHT_THRESHOLD	800

	 		#define	TEMP_PIN										5

	 		#define	TEMP_THRESHOLD			72

	 		#define	TEMP_VOLTAGE				5.0

	 		#define	ONBOARD_LED						13

	
③	 int	curtain_state		=	1;	

	 int	light_status			=	0;

	 double	temp_status	=	0;

	
	 boolean	daylight			=	true;

	 boolean	warm							=	false;

	
	 AF_Stepper	motor(100,	2);

	
④	 void	setup()	{	

	 		Serial.begin(9600);

	 		Serial.println("Setting	up	Curtain	Automation...");

	 		//	Set	stepper	motor	rotation	speed	to	100	RPMs

	 		motor.setSpeed(100);

	 		//	Initialize	motor

	 		//	motor.step(100,	FORWARD,	SINGLE);

	 		//	motor.release();

	 		delay(1000);

	 }

	
⑤	 void	Curtain(boolean	curtain_state)	{			

	 		digitalWrite(ONBOARD_LED,	curtain_state	?	HIGH	:	LOW);

	 		if	(curtain_state)	{

	 				Serial.println("Opening	curtain...");

	 				//	Try	SINGLE,	DOUBLE,	INTERLEAVE	or	MICROSTOP

http://media.pragprog.com/titles/mrhome/code/CurtainAutomation/CurtainAutomation.pde

	 				motor.step(800,	FORWARD,	SINGLE);

	 		}	else	{

	 				Serial.println("Closing	curtain...");

	 				motor.step(800,	BACKWARD,	SINGLE);

	 		}

	 }

	
⑥	 void	loop()	{		

	
	 		//	poll	photocell	value

	 		light_status	=	analogRead(LIGHT_PIN);

	 		delay(500);

	
	 		//	print	light_status	value	to	the	serial	port

	 		Serial.print("Photocell	value	=	");

	 		Serial.println(light_status);

	 		Serial.println("");

	
	 		//	poll	temperature

	 		int	temp_reading	=	analogRead(TEMP_PIN);

	 		delay(500);

	
	 		//	convert	voltage	to	temp	in	Celsius	and	Fahrenheit

	 		float	voltage	=	temp_reading	*	TEMP_VOLTAGE	/	1024.0;

	 		float	temp_Celsius	=	(voltage	-	0.5)	*	100	;

	 		float	temp_Fahrenheit	=	(temp_Celsius	*	9	/	5)	+	32;

	 		//	print	temp_status	value	to	the	serial	port

	 		Serial.print("Temperature	value	(Celsius)	=	");

	 		Serial.println(temp_Celsius);

	 		Serial.print("Temperature	value	(Fahrenheit)	=	");

	 		Serial.println(temp_Fahrenheit);

	 		Serial.println("");

	
	 		if	(light_status	>	LIGHT_THRESHOLD)

	 						daylight	=	true;

	 		else

	 						daylight	=	false;

	
	 		if	(temp_Fahrenheit	>	TEMP_THRESHOLD)

	 						warm	=	true;

	 		else

	 						warm	=	false;

	
	 		switch	(curtain_state)

	 		{

①

②

③

④

⑤

	 		case	0:

	 						if	(daylight	&&	!warm)

	 						//	open	curtain

	 						{

	 								curtain_state	=	1;

	 								Curtain(curtain_state);

	 						}

	 						break;

	
	 		case	1:

	 						if	(!daylight	||	warm)

	 						//	close	curtain

	 						{

	 								curtain_state	=	0;

	 								Curtain(curtain_state);

	 						}

	 						break;

	 		}

	 }

Reference	the	AFMotor	library	that	will	be	used	to	drive	the	stepper	motor
attached	to	the	Adafruit	motor	shield.

We	will	define	several	values	up	front.	This	will	make	it	easier	to	change	the
LIGHT_THRESHOLD	and	TEMP_THRESHOLD	values	as	we	refine	the	stepper	motor
trigger	points.

Variables	for	storing	curtain	state—as	well	as	the	analog	values	of	the
photocell	and	temperature	sensors	two	boolean	variables,	daylight	and	warm—
are	used	in	the	main	loop’s	conditional	statements	to	identify	the	status	of
daylight	and	the	indoor	room	temperature.	We	also	assign	the	number	of
steps	per	revolution	(in	this	case,	100)	and	the	motor	shield	port	that	the
stepper	motor	is	attached	to	(in	this	case,	the	second	port	per	the	wiring
diagram)	by	creating	an	AF_Stepper	object	called	motor.

Here’s	where	we	initialize	the	serial	port	to	output	the	light	and	temperature
readings	to	the	Arduino	IDE	serial	window,	as	well	as	initialize	the	speed	of
the	motor	(in	this	case,	100	revolutions	per	minute).

⑥

The	Curtain	function	will	be	called	when	the	light	or	temperature	thresholds
are	exceeded.	The	state	of	the	curtains	(open	or	closed)	is	maintained	so	that
the	motor	doesn’t	keep	running	every	second	the	threshold	is	exceeded.	After
all,	once	the	curtains	are	opened,	there’s	no	need	to	open	them	again.	In	fact,
doing	so	might	even	damage	the	stepper	motor,	grooved	pulley,	or	curtain
drawstring.

If	the	Curtain	function	receives	a	curtain_state	of	true,	the	stepper	motor	will
spin	counterclockwise	to	open	the	curtains.	A	curtain_state	value	of	false	will
spin	clockwise	to	close	the	curtains.

We	will	also	use	the	Arduino’s	onboard	LED	to	indicate	the	status	of	the
curtains.	If	the	curtains	are	open,	the	LED	will	remain	lit.	Otherwise,	the
LED	will	be	off.	Since	the	motor	shield	will	be	covering	the	top	of	the
Arduino,	the	onboard	LED	won’t	be	easily	visible,	but	it	will	still	serve	as	a
good	visual	aid	for	debugging	purposes.

The	main	loop	of	the	sketch	is	where	all	the	action	happens.	We	poll	the
analog	values	of	the	photocell	and	temperature	every	second,	convert	the
electrical	value	of	the	temperature	sensor	both	to	Celsius	and—for	those	who
have	yet	to	convert	to	the	metric	system—Fahrenheit.	If	the	light	sensor
exceeds	the	LIGHT_THRESHOLD	value	we	assigned	in	the	#define	section	of	the
sketch,	then	it	must	be	daytime	(i.e.,	daytime	=	true).	However,	we	don’t	want
to	open	the	curtains	if	it’s	already	warm	in	the	room,	since	the	incoming
sunlight	would	make	the	room	even	warmer.	Thus,	if	the	temperature	status
exceeds	the	TEMP_THRESHOLD,	we	will	keep	the	curtains	closed	until	the	room
cools	down.	After	checking	the	status	of	the	curtain_state,	we	will	pass	a	new
state	to	the	Curtain	routine	and	open	or	close	the	curtains	accordingly.

Verify,	download,	and	execute	the	sketch	on	the	Arduino.	Leave	the	Arduino
tethered	to	your	computer	and	open	the	Arduino	IDE’s	serial	window	to	see	the
light	and	temperature	values	being	captured	by	the	sensors.	Now	we	can	verify
whether	exceeding	the	threshold	values	produces	the	desired	effect	of	activating
the	stepper	motor	(see	Figure	34,	Test	the	Curtain	Automation	sketch).

Test	the	Curtain	Automation	sketch	first	by	covering	the	photocell	with	your
finger	to	verify	that	the	stepper	motor	rotates	the	shaft	in	the	counterclockwise
direction.	Remove	your	finger,	and	the	shaft	should	rotate	clockwise	the	same
number	of	times.	Blow	warm	air	or	use	a	blow	dryer	to	warm	up	the	air	around
the	temperature	sensor.	When	the	threshold	is	exceeded,	the	stepper	motor	shaft
should	spin	clockwise.	This	translates	to	open	curtains	being	closed.	Before
removing	the	heat	source,	cover	the	photocell	with	your	finger	again.	Then
remove	the	heat	source.	The	stepper	motor	shaft	should	remain	motionless.

Figure	34.	Test	the	Curtain	Automation	sketch

Remove	your	finger	from	the	photocell.	If	the	air	surrounding	the	temperature
sensor	has	cooled,	the	shaft	should	rotate	counterclockwise.	If	it	doesn’t	rotate,
blow	air	on	the	temperature	sensor	to	cool	it	down;	it	should	react	once	the
temperature	drops	below	the	target	threshold.	Verify	that	your	sketch	reacted
when	the	designated	threshold	values	for	light	and	temperature	were	exceeded.
You	may	need	to	tweak	these	threshold	values	to	ensure	that	the	stepper	motor
reacts	when	the	desired	light	densities	and	room	temperature	are	attained.	You
may	also	need	to	consider	omitting	a	light	or	temperature	sensor	range	for	the
assigned	threshold	values.	Otherwise,	the	stepper	motor	may	act	a	bit	jittery	as

the	light	or	temperature	wavers	back	and	forth	between	triggered	threshold
values.

After	you	have	confirmed	that	the	sensors	are	properly	reporting	their	values	and
the	stepper	motor	shaft	moves	when	the	threshold	values	are	exceeded,	we	can
seat	the	sensors	on	a	windowsill	and	mount	the	stepper	motor	on	the	wall	next	to
the	curtains.	Once	the	system	is	working,	you	can	also	choose	to	reposition	the
sensors	anywhere	inside	the	room	as	long	as	the	wire	attaching	the	sensors	to	the
Arduino	board	is	long	enough.	If	you	do	so,	make	sure	that	the	wire	and	sensors
are	not	in	an	area	where	they	might	accidentally	be	stepped	on	or	where	the
connecting	wire	could	be	tripped	over.

8.7	Installing	the	Hardware
When	setting	up	the	sensors,	you	can	leave	them	seated	in	the	small	breadboard
we	used	during	the	testing	of	the	Curtain	Automation	sketch.	I	used	a	piece	of
foam	double-sided	tape	to	keep	the	breadboard	seated	in	place,	with	the	sensors
pointing	toward	the	window	like	a	high-tech	flower	box.	Also,	the	stepper	motor
tends	to	get	very	warm	when	in	use,	so	as	an	added	safety	precaution,	be	sure	to
mount	the	motor	away	from	anything	flammable.	For	example,	make	sure	the
stepper	motor	is	mounted	away	from	the	curtains	or	shade	that	you’re	opening
and	closing!

Measure	the	distance	from	the	breadboard	sitting	on	the	windowsill	to	where	you
want	to	place	the	Arduino+motor	shield.	The	Arduino	can	be	mounted	on	a
table,	in	an	enclosure,	or	even	on	the	wall	if	you	prefer.	I	recommend	using	an
extra	foot	or	two	of	wire	wrapped	in	a	loop	just	in	case	you	need	to	relocate	the
Arduino	later.	Also	take	into	account	the	placement	of	the	12V	power	supply
brick	and	the	electric	cord	that	has	to	plug	into	the	Arduino	to	power	the
Arduino,	the	motor	shield,	and	the	stepper	motor.

Figure	35.	Curtain	Automation,	installed	and	calibrated

Slip	the	rubber-grooved	pulley	wheel	onto	the	stepper	motor	shaft.	Loop	the

curtain	drawstring	around	the	pulley	wheel.	Pull	the	stepper	motor	down	until
the	drawstring	is	taut	around	the	pulley	wheel.	Before	permanently	mounting	the
stepper	motor,	attach	the	four	angle	brackets	to	it	using	double-sided	foam	tape.
The	tape	will	keep	the	motor	in	place	while	you	screw	in	the	mounting	brackets.
The	foam	tape	will	also	help	dampen	vibrations	against	the	wall	and	keep	the
operation	quiet	when	the	stepper	motor	shaft	is	operating.	You	may	also	want	to
affix	the	stepper	motor	first	to	the	wall,	using	tape	to	hold	it	in	place,	just	to	be
sure	that	the	curtain	drawstring	isn’t	looped	too	tightly	or	too	loosely	around	the
pulley	attached	to	the	stepper	motor	shaft.	Don’t	make	the	string	too	taut	in	case
you	need	just	enough	slack	to	allow	for	recalibration	should	the	string	happen	to
slip	when	the	pulley	spins.

Perform	a	few	tests	before	screwing	the	angle	brackets	to	the	wall.	This	will
verify	that	the	drawstring	around	the	pulley	has	just	the	right	amount	of	tension
and	friction	to	be	pulled	by	the	rotating	pulley	when	the	stepper	motor	runs.
When	you’re	satisfied	with	the	placement	of	the	stepper	motor,	screw	the	four
angle	brackets	into	the	wall.

Calibrate	the	speed	and	number	of	revolutions	that	the	stepper	motor	needs	to
make	to	fully	open	and	close	the	curtains.	Start	in	small	increments	at	first,
remembering	to	apply	the	same	number	of	revolutions	in	both	clockwise	and
counterclockwise	directions.	You	can	estimate	the	number	of	revolutions	needed
to	draw	the	curtains	open	and	closed	by	measuring	the	distance	that	the
drawstring	moves	with	each	revolution	of	the	pulley.	Divide	this	by	the	total
distance	that	the	curtains	need	to	move	to	completely	open	and	close.	This	will
give	you	the	total	number	of	stepper	motor	shaft	rotations	you	need	to	program
to	open	and	close	the	curtains.

	 Distance	curtain	moves	with	one	stepper	motor	shaft	rotation	=	5	centimeters

	 Total	distance	curtain	needs	to	move	from	start	to	finish	=	90	centimeters

	 90	cm	/	5	cm	=	18	rotations

When	the	system	is	perfectly	calibrated,	mark	the	drawstring	with	a	felt	marker
at	the	points	where	the	string	meets	the	pulley	when	the	curtains	are	opened	and
closed.	This	will	help	should	you	need	to	recalibrate	the	drawstring	if	it	falls	out
of	sync	over	time.	Once	configured,	your	setup	may	look	like	Figure	35,	Curtain

Automation,	installed	and	calibrated.

Test	the	system	a	few	times	by	covering	the	photocell	and	artificially	heating	the
temperature	sensor	with	your	breath	or	a	blow	dryer.	Observe	when	the	photocell
triggers	the	curtain	opening	and	closing	events.	If	it’s	too	sensitive	or	opens	the
curtains	as	a	result	of	indoor	light	reflecting	off	the	glass,	you	may	need	to
reposition	the	photocell	in	a	different	location.	I	taped	the	sensor	to	a	corner	of
the	window	using	black	electrical	tape.	This	helped	minimize	the	sensor	from
being	exposed	and	reacting	to	indoor	room	lighting.

Allow	the	assembly	to	run	a	few	days,	noting	when	the	curtains	should	react	to
light	or	temperature	triggering	the	sensors.	Alter	the	temperature	and	light
sensitivity	values	accordingly.	Once	everything	is	set	up	correctly,	you	should
only	need	to	check	on	the	curtain	string’s	position	once	every	couple	of	weeks
for	any	recalibration	adjustments.	After	a	while,	you	will	simply	take	the
autonomous	curtains	for	granted.	Visiting	guests	seeing	the	curtains	in	operation
for	the	first	time	will	be	amazed	by	your	high-tech	handiwork.

8.8	Next	Steps
The	motor	shield	can	handle	up	to	two	stepper	motors	at	a	time.	This	might	be
useful	in	a	large	room	with	more	than	one	window.	The	curtains’	pulley	systems
can	also	be	linked	together	so	that	a	single	stepper	motor	could	open	and	close
multiple	curtains/shades.	Going	even	further,	the	stepper	motor/motor	shield
combination	can	be	employed	in	a	number	of	other	home	automation	scenarios.

Elaborate	on	the	curtain	pulley	with	more	sophisticated	curtain	rod	systems
that	have	an	interior	up/down	window	blind	and	exterior	left/right	curtain
draw.	Time	one	motor	to	raise/lower	the	blind	followed	by	opening/closing
the	decorative	exterior	curtain.	Modify	these	two	configurations	based	on
heat	and	light	(i.e.,	if	hot	daylight,	open	curtain	but	close	blind).

Add	a	PIR	sensor	to	the	Arduino+motor	shield	assembly	so	you	can	open
and	close	the	curtains	when	motion	is	detected	in	the	room.

Network-enable	the	curtain	automation	assembly	with	an	onboard	LED	or
an	Arduino	Ethernet	so	you	can	open	and	close	your	curtains	from	your
smartphone	or	write	a	script	that	will	operate	the	curtains	during	certain
times	of	the	day.

Keep	the	Arduino	with	motor	shield	assembly	connected	to	the	USB	port	of
your	computer	and	drive	the	curtains	remotely	via	USB-to-serial
communication.	Set	up	a	web	application	server	to	expose	the	open/close
methods	as	web	services	to	be	called	from	a	native	smartphone	application.
Write	a	script	that	runs	on	the	host	computer	to	open	and	close	the	curtains
at	a	specified	date	and	time.

Repurpose	the	pulley	system	for	Halloween	fun	by	swapping	out	the	light
and	temperature	sensors	with	a	motion	sensor.	Attach	the	pulley	string	to
big	paper	spiders	that	go	up	and	down	when	motion	is	detected.

Create	a	stepper	motor-driven	carousel	for	clothing	with	unique	RFID	tags
affixed	to	each	hanger.	Queue	up	a	random	outfit	or	base	the	selection	on

criteria	such	as	day,	month/season,	and	current	outdoor	temperature.	Make	a
phone	or	tablet	app	that	allows	you	to	gesture	to	a	photo	of	your	desired
outfit	onscreen	and	then	have	that	clothing	selection	waiting	for	you	front
and	center	in	your	closet.

Footnotes

[78] https://www.adafruit.com/products/324

[79] http://www.adafruit.com/products/81

[80] https://www.adafruit.com/products/352

[81] https://www.adafruit.com/products/165

[82] http://www.ladyada.net/make/mshield/make.html

[83] https://github.com/adafruit/Adafruit-Motor-Shield-library

[84] http://www.ladyada.net/make/mshield/use.html

Copyright	©	2012,	The	Pragmatic	Bookshelf.

https://www.adafruit.com/products/324
http://www.adafruit.com/products/81
https://www.adafruit.com/products/352
https://www.adafruit.com/products/165
http://www.ladyada.net/make/mshield/make.html
https://github.com/adafruit/Adafruit-Motor-Shield-library
http://www.ladyada.net/make/mshield/use.html

Chapter	9

Android	Door	Lock
Tired	of	carrying	around	old-fashioned	metal	keys	to	your	home?	You’re
probably	already	carrying	a	smartphone.	Wouldn’t	it	be	much	more	convenient
to	open	your	front	door	via	an	app	that	you	built	for	your	smartphone	instead?
Wouldn’t	it	also	be	a	nice	security	feature	to	take	a	photo	of	the	person(s)
unlocking	your	door	with	this	app	and	email	that	captured	photo	as	an
attachment	to	yourself?	(See	Figure	36,	Open	doors	wirelessly	using	a
smartphone.)

In	this	project,	we	are	going	to	use	an	inexpensive,	first	generation	Android
phone.	We	will	connect	it	to	a	Sparkfun	IOIO	(“yo-yo”)	board	and	a	relay	switch
to	operate	an	electrified	door	latch.	The	first-gen	Android	phone	will	run	a	server
that	will	respond	to	your	unlock	requests	sent	from	a	second	Android	phone
running	the	door	unlock	client.	When	the	unlock	request	is	triggered,	the	server
phone	will	snap	a	photo	using	the	phone’s	built-in	camera	and	silently	email	the
captured	image	to	you.	Let’s	go	and	make	it!

Figure	36.	Open	doors	wirelessly	using	a	smartphone

9.1	What	You	Need
I	originally	designed	this	project	using	a	relay	switch	that	we	would	have
constructed	part	by	part.	This	relay	would	have	been	used	to	turn	on	and	off	the
power	to	the	electric	door	latch.	But	after	reviewing	the	potential	safety	hazards
associated	with	improper	wiring	and	handling	of	the	circuit,	I	decided	to	take	a
safer,	more	conservative	approach.

Instead	of	wrestling	with	the	potentially	jolting	perils	of	accidental	relay	shocks,
we	will	use	a	product	specifically	designed	to	address	these	concerns.	Called	the
PowerSwitch	Tail	II,	this	simple	switch	houses	a	relay	that	can	control	standard
120V	electrical	devices.	The	relay	can	be	energized	via	a	5V	signal	from	a
digital	pin	of	a	microcontroller	board	such	as	an	Arduino	or,	in	the	case	of	this
project,	the	PIC-based	IOIO	board.	The	PowerSwitch	Tail’s	prebuilt	relay	circuit
is	far	easier	and	safer	than	building	your	own,	and	the	cost	is	quite	reasonable
compared	to	the	expense	of	procuring	and	assembling	these	parts	on	your	own.

Rather	than	using	an	Arduino	connected	to	a	computer	for	data	processing	and
control,	we	are	going	to	use	an	Android	phone	connected	to	Sparkfun’s	IOIO
board.	This	hardware	combination	will	serve	the	same	function	as	an
Arduino/PC	coupling	but	without	the	size,	bulk,	and	energy	requirements	that	an
always-on	Arduino/PC	combination	would	entail.

So	what	exactly	is	an	IOIO	board?	It	is	a	hardware	bridge	that	allows	Android
phones	to	communicate	with	whatever	sensors	and	motors	are	connected	to	the
board.	The	IOIO	board	connects	to	the	phone	via	Android’s	USB	debugging
pathway.	This	pathway	can	be	used	to	send	and	receive	signals	to	and	from	the
IOIO’s	onboard	PIC	processor.

IOIO’s	designer,	Google	software	engineer	Ytai	Ben-Tsvi,	designed	the	IOIO
prior	to	Google’s	official	Open	Accessory	Protocol	(ADK)	initiative,[85]	but	he
is	working	to	make	the	board	fully	compatible	with	the	ADK	specification.	The
ADK	is	part	of	Google’s	Android@Home	home	automation	initiative.	Investing
in	the	board	not	only	gives	you	the	tools	you	need	to	make	it	work	today,	but	it

will	also	play	nice	with	the	future	Android@Home	APIs.	And	even	more
importantly,	the	IOIO	works	especially	well	today	for	custom	projects	like	the
one	we	will	build.

Here	is	a	list	of	all	the	parts	we	will	need	to	construct	the	Android	Door	Lock
(refer	to	the	photo	in	Figure	37,	Android	Door	Lock	parts	(some	preassembled)):

Figure	37.	Android	Door	Lock	parts	(some	preassembled)

1.	 A	PowerSwitch	Tail	II	(PN	80135)[86]

2.	 A	2.1mm	female	barrel	jack	cable	to	safely	connect	the	12V	power	supply
to	the	electric	door	strike[87]

3.	 A	5VDC	1A	power	supply[88]

4.	 A	12V	5A	switching	power	supply	to	electrify	the	electric	door	strike[89]

5.	 Three	pieces	of	wire

6.	 An	Android	OS	smartphone	with	a	built-in	camera,	preferably	the	original
Android	G1	phone.	This	phone	can	be	purchased	from	sites	like
http://craigslist.org	or	http://ebay.com	for	under	$100	US.	Note	that	not	all
Android	phones	are	compatible	with	the	IOIO	Board.	Check	the	IOIO

http://craigslist.org
http://ebay.com

Board	discussion	group	for	more	details.[90]

7.	 A	barrel	jack	to	2-pin	JST	cable	that	will	connect	to	the	IOIO	board’s	JST
right	angle	connector[91]

8.	 A	Sparkfun	IOIO	Board	with	JST	right	angle	connector[92]

9.	 A	Smarthome	Electric	12VDC	Door	Strike[93]

10.	 A	standard	A	to	Mini-B	USB	cable	to	connect	the	G1	Android	phone	to	the
USB	port	on	the	IOIO	board

You	will	also	need	a	second	Android	device	(phone,	tablet,	etc.)	that	can	run	the
Door	Lock	client	application	along	with	the	Eclipse	IDE,	Android	SDK	1.5	or
higher,	and	the	Android	Development	Tools	(ADK)	plugin	for	Eclipse.	Refer	to
the	Chapter	7,	WebEnabled	Light	Switch	project	for	more	details	about	the
Android	development	requirements.

While	this	project	is	one	of	the	most	expensive	to	build	in	this	book,	it	is	also
one	of	the	most	flexible	in	terms	of	reusing	and	extending	the	hardware
investment.	Once	you	become	familiar	with	how	to	leverage	the	IOIO	board
with	an	Android	phone,	you	will	understand	why	Google	is	so	enthusiastic	about
their	Android@Home	effort.	You	will	also	learn	how	you	can	easily	create	a	new
category	of	home	automation	applications	implementing	your	own	ideas.	But
before	you	can	attain	those	greater	heights	of	actualization,	you	have	to
understand	the	basics.	That’s	what	we’re	going	to	do	in	the	next	section.

IOIO	Successor?
Sparkfun	announced	a	new,	ADK-compliant	development	board	based	on	the
Arduino	Mega	ADK	that	uses	Google’s	Open	Accessory	protocol.	Called	the
Electric	Sheep,[94]	this	new	board	also	features	an	onboard	FTDI	header	and	DC
power	connector,	obviating	the	need	for	the	separate	components	required	by
the	IOIO.	However,	the	board	is	also	twice	as	expensive	as	the	IOIO	and	requires
more	power.	Fortunately,	the	Electric	Sheep	has	plenty	of	analog	and	digital	pins
and	can	be	programmed	using	Google’s	ADK	and	the	Arduino	Android	Handbag.
[95]	As	such,	this	more	powerful	Android@Home-friendly	board	will	likely	replace
the	IOIO	board	in	the	future.

9.2	Building	the	Solution
This	is	a	fairly	complex	project	and	certainly	the	most	challenging	one	in	the
book.	We	will	spend	a	majority	of	the	time	assembling	and	testing	this	project’s
hardware.	After	the	hardware	has	been	tested,	we’ll	program	the	Android	phone
to	talk	to	the	IOIO	board,	the	onboard	phone’s	camera,	and	the	wireless	network.
Then	we’ll	write	a	simple	Android	client	application	we	can	execute	from
another	Android	device	that	will	trigger	the	IOIO	board	to	turn	on	the
PowerSwitch	Tail,	which	will	in	turn	power	the	electric	door	strike	that	unlocks
the	door.	Here	are	the	steps	we’ll	take	to	assemble,	program,	and	deploy	the
Android	Door	Lock:

1.	 Attach	the	JST	connector	to	the	Sparkfun	IOIO	board	so	that	the	IOIO
board	can	be	powered	by	the	5V	power	supply.

2.	 Tether	the	Android	G1	phone	to	the	IOIO	board	via	the	USB	cable.

3.	 Plug	the	Smarthome	Electric	12VDC	Door	Strike	into	the	12V	power
supply	via	the	2.1mm	female	barrel	jack	cable.

4.	 Connect	the	PowerSwitch	Tail	to	the	IOIO	board	via	three	wires	for	the
PowerSwitch	Tail’s	power,	control,	and	ground	connectors.

5.	 Program	the	Android	phone	to	trigger	the	PowerSwitch	Tail	via	the	IOIO
board.

6.	 Snap	a	photo	using	the	Android	phone’s	built-in	camera	when	the
PowerSwitch	Tail	is	triggered.

7.	 Send	the	resulting	image	as	a	message	attachment	to	a	designated	email
recipient.

8.	 Write	a	native	client	application	for	a	second	Android	device	that	will	be
used	to	unlock	the	door	strike.

9.	 Install	the	Electric	Door	Strike	in	the	desired	doorframe,	routing	the
electrical	wiring	to	a	nearby	outlet.

10.	 Bundle	the	controller	components	(the	PowerSwitch	Tail	circuit	and	the
IOIO	board)	into	an	easily	accessible	wall-mounted	lock	box	that	can	be
serviced	in	case	parts	need	to	be	replaced.

11.	 Mount	the	Android	phone	running	the	door	lock	server	application	near	the
entry	with	the	camera	lens	facing	the	door	so	images	of	those	entering	can
be	easily	captured.

The	most	time-consuming	aspects	are	the	soldering	of	the	JST	right	angle
connector	to	the	IOIO	board	and	the	wiring	of	the	circuit	between	the	IOIO
board	and	the	PowerSwitch	Tail.	Everything	else	is	simply	a	matter	of	plugging
into	the	right	segment	in	the	series.	Essentially,	the	5V	power	supply	plugs	into
the	IOIO	board,	the	Android	phone	plugs	into	the	IOIO	via	the	USB	cable,	the
PowerSwitch	Tail,	controlled	by	the	IOIO	board,	plugs	into	the	wall	on	one	side
and	the	12V	power	supply	on	the	other,	and	the	electric	door	strike	plugs	into	the
12V	power	supply.

Figure	38.	Android	Door	Lock	wiring	diagram

The	first	thing	you	should	do	is	solder	the	JST	right	angle	connector	to	the	IOIO
board.	It	would	have	been	much	easier	for	Sparkfun	customers	had	the	connector
been	preinstalled	on	the	board.	But	hey,	that’s	part	of	the	fun	(along	with	the
terror	should	something	go	horribly	wrong	when	an	expensive	component
accidentally	gets	fried)	that	these	projects	have	to	offer.	Fortunately,	soldering
the	connector	isn’t	too	difficult	and	will	make	powering	the	board	and	the
Android	phone	vastly	easier.

After	the	JST	connector	is	attached	to	the	IOIO	board,	plug	the	barrel	jack	to	2-
pin	JST	cable	into	the	JST	connector	on	the	board	and	the	5V	power	supply.
Then	attach	the	Android	phone	via	a	USB	cable	to	the	IOIO	board.	You’re
halfway	there!

Attach	the	positive	and	negative	wires	of	the	electric	door	strike	to	the	positive
and	negative	leads	of	the	2.1mm	female	barrel	jack	cable.	The	positive	wires	are
those	with	a	white	strip	along	the	side	of	the	wire	casing.	Use	electrical	tape	or,
better	still,	heat	shrink	tubing	to	safely	cover	any	exposed	wire.	Connect	the
barrel	jack	to	the	12V	power	supply.

Test	the	strike	by	plugging	the	12V	power	supply	into	your	standard	120V	wall
socket.	You	should	see	the	LED	on	the	power	supply	light	up,	followed	by	an
audible	click	from	the	strike.	Note	that	while	electrified,	you	will	be	able	to
move	the	spring	latch	on	the	strike	back	and	forth	without	much	resistance.
Unplug	the	12V	power	supply	from	the	wall	and	the	strike	will	return	to	its
fixed,	nonelectrified	state.	Consequently,	you	should	be	unable	to	move	the
latch.

Next,	let’s	connect	the	PowerSwitch	Tail	to	the	IOIO	board.	Follow	along	with
Figure	38,	Android	Door	Lock	wiring	diagram.	Using	three	wires,	connect	one
from	the	ground	pin	on	the	IOIO	board	to	the	the	negative	lead	on	the
PowerSwitch	Tail.

Connect	the	middle	(control)	lead	on	the	PowerSwitch	Tail	to	the	IOIO	board’s

digital	pin	3.	Why	not	pin	0,	1,	or	2?	That’s	because	not	all	IOIO	boards	can
handle	the	5V	signal	required	to	electrify	the	relay	in	the	PowerSwitch	Tail.
Pulling	5V	from	a	pin	not	capable	of	this	voltage	could	damage	the	IOIO	board.
Refer	to	the	IOIO	board	wiki	or	simply	flip	the	IOIO	board	over	and	look	for	the
pins	that	are	enclosed	by	a	white	circle.[96]	The	circle	indicates	that	the	enclosed
pin	is	5V	pullup	capable.	When	wired,	your	IOIO	board	should	look	like	the	one
shown	in	Figure	39,	Wiring	the	IOIO	board.

Figure	39.	Wiring	the	IOIO	board

Finally,	attach	a	wire	from	the	positive	lead	from	the	PowerSwitch	Tail	to	any	of
the	three	5V	pins	on	the	left	lower	corner	of	the	IOIO	board.	The	circuit	is
complete.

At	this	point,	nothing	will	happen	until	we	program	the	necessary	instructions	to
turn	pin	3	on	and	off,	thereby	signaling	the	PowerSwitch	Tail	to	do	the	same.	As
such,	we	are	going	to	write	a	simple	Android	program	with	an	onscreen	toggle
switch	that	will	instruct	pin	3	to	do	just	that.

9.3	Controlling	the	Android	Door	Lock
Before	we	can	write	an	elaborate	server	for	the	Android	phone,	we	first	need	to
write	a	test	program	that	will	validate	the	circuit	we	constructed	in	the	last
section.

Be	sure	to	have	installed	the	plug-ins	for	the	Android	SDK	and	Eclipse	IDE	with
the	Android	Development	Tools	on	your	computer.	Refer	to	Chapter	7,
WebEnabled	Light	Switch,	for	the	steps	on	how	to	configure	the	SDK	and	IDE	if
you	haven’t	already	done	so.	Then,	download	the	HelloIOIO	demo	project	from
the	Sparkfun	IOIO	tutorial	web	page.[97]	The	HelloIOIO	project	is	a	simple
application	that	turns	the	IOIO’s	onboard	LED	on	and	off.	We	are	going	modify
this	simple	application	by	declaring	another	ToggleButton	object	in	its	main.xml

layout	file.	Then	we’ll	add	four	lines	of	code	to	the	MainActivity.java	file	that
describe	the	added	ToggleButton	action	for	digital	pin	3	on	the	IOIO.

Import	Sparkfun’s	HelloIOIO	project	into	the	Eclipse	environment	via	the
File→Import→Existing	Projects	option.	If	you	prefer,	you	can	also	load	the
modified	HelloIOIO-PTS	project	available	from	this	book’s	code	download	page
that	has	all	the	necessary	code	additions	mentioned	in	this	section.

All	IOIO	board	projects	rely	on	the	custom	IOIOLib	library	that	must	be	added	to
each	IOIO	project.	Use	the	following	steps	to	do	so:

1.	 Import	the	IOIOLib	bundle	into	the	Eclipse	environment	via	the	same
File→Import→Existing	Projects	into	Workspace	menu	option.

2.	 Highlight	the	HelloIOIO	project	in	the	Eclipse	Package	Explorer	pane.

3.	 Access	the	Properties	option	from	the	Eclipse	Project	menu.

4.	 Select	Android	from	the	selections	on	the	left	column	of	the	Properties
dialog	box.

5.	 Click	the	Add...	button.	A	Project	Selection	dialog	box	should	pop	up

listing	the	IOIOLib	project.	Highlight	the	IOIOLib	item	and	click	the	OK
button.

If	IOIOLib	was	successfully	imported,	it	should	be	listed	with	a	green
checkmark	in	the	Library	portion	of	the	Properties	dialog	box,	as	shown	in
Figure	40,	IOIOLib	successfully	imported	and	referenced.

Figure	40.	IOIOLib	successfully	imported	and	referenced

With	the	IOIOLib	properly	referenced,	edit	the	reslayout/main.xml	file	from	the
HelloIOIO	project.	Add	another	ToggleButton	object	to	the	existing	layout	by
copying	the	existing	TextView	description	containing	the	ToggleButton	description	of
the	toggle	button	used	to	turn	on	and	off	the	IOIO’s	onboard	LED.	Paste	it	in

right	after	the	original	TextView	section.	Then,	rename	the	android/id	value	of	the
copied	toggle	button	to	android:id="@+id/powertailbutton".	This	will	be	the	reference
accessed	in	the	modified	MainActivity	class.	The	modified	main.xml	file	should	look
like	this:

AndroidDoorLock/HelloIOIO-PTSreslayout/main.xml
	 <?xml	version="1.0"	encoding="utf-8"?>

	 <LinearLayout	xmlns:android="http://schemas.android.com/apkresandroid"

	 				android:orientation="vertical"

	 				android:layout_width="fill_parent"

	 				android:layout_height="fill_parent"
>

	 <TextView

	 				android:layout_width="fill_parent"

	 				android:layout_height="wrap_content"

	 				android:text="@string/txtLED"

	 				android:id="@+id/title"
/>

	 <ToggleButton	android:text="ToggleButton"

	 								android:layout_width="wrap_content"

	 								android:layout_height="wrap_content"

	 								android:id="@+id/button"
>

	 </ToggleButton>

	 <TextView

	 				android:layout_width="fill_parent"

	 				android:layout_height="wrap_content"

	 				android:text="@string/txtPowerTail"

	 				android:id="@+id/title"
/>

	 <ToggleButton	android:text="ToggleButton"

	 								android:layout_width="wrap_content"

	 								android:layout_height="wrap_content"

	 								android:id="@+id/powertailbutton"
>

	 </ToggleButton>

	 </LinearLayout>

Next,	add	the	code	for	the	second	toggle	button	to	the	MainActivity	class	that	will
turn	on	and	off	the	signal	going	to	the	PowerSwitch	Tail.	The	first	addition	is	the
powertailbutton_	=	(ToggleButton)	findViewById(R.id.powertailbutton);	line,	which
associates	the	powertailbutton_	object	with	the	powertailbutton	toggle	button
defined	in	the	main.xml	file.

http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/HelloIOIO-PTS<i>res</i>layout/main.xml

With	the	user	interface	addition	of	the	toggle	button	for	the	PowerSwitch	Tail,
we	can	add	the	object	reference	to	the	MainActivity	class	located	in	the
srcioio/examples/hello/pts/MainActivity.java	file:

AndroidDoorLock/HelloIOIO-PTSsrcioio/examples/hello/pts/MainActivity.java
	 private	ToggleButton	button_;

	 private	ToggleButton	powertailbutton_;

Instantiate	the	powertailbutton_	object	in	the	MainActivity	OnCreate	method,	like	this:

AndroidDoorLock/HelloIOIO-PTSsrcioio/examples/hello/pts/MainActivity.java
	 @Override

	 public	void	onCreate(Bundle	savedInstanceState)	{

	 								super.onCreate(savedInstanceState);

	 								setContentView(R.layout.main);

	 								button_	=	(ToggleButton)	findViewById(R.id.button);

	 								powertailbutton_	=	(ToggleButton)	findViewById(R.id.powertailbutton);

	 }

So	when	the	main	application	window	is	created,	the	toggle	button	for	the
PowerSwitch	Tail	will	now	be	accessible	via	the	MainActivity	class.	All	that
remains	is	the	code	needed	to	listen	for	the	powertailbutton_	toggle	action	being
turned	on	and	off:

AndroidDoorLock/HelloIOIO-PTSsrcioio/examples/hello/pts/MainActivity.java
	 class	IOIOThread	extends	AbstractIOIOActivity.IOIOThread	{

	 								/**	The	onboard	LED.	*/

	 								private	DigitalOutput	led_;

①	 								private	DigitalOutput	powertail_;	

	 								/**

	 									*	Called	every	time	a	connection	with	IOIO	has	been	established.

	 									*	Typically	used	to	open	pins.

	 									*

	 									*	@throws	ConnectionLostException

	 									*													When	IOIO	connection	is	lost.

	 									*	@see	ioio.lib.util.AbstractIOIOActivity.IOIOThread#setup()

	 									*/

	 								@Override

	 								protected	void	setup()	throws	ConnectionLostException	{

	 																led_	=	ioio_.openDigitalOutput(0,	true);

②	 																powertail_	=	ioio_.openDigitalOutput(3,true);	

http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/HelloIOIO-PTS<i>src</i>ioio/examples/hello/pts/MainActivity.java
http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/HelloIOIO-PTS<i>src</i>ioio/examples/hello/pts/MainActivity.java
http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/HelloIOIO-PTS<i>src</i>ioio/examples/hello/pts/MainActivity.java

①

②

③

	 								}

	 								/**

	 									*	Called	repetitively	while	the	IOIO	is	connected.

	 									*

	 									*	@throws	ConnectionLostException

	 									*													When	IOIO	connection	is	lost.

	 									*

	 									*	@see	ioio.lib.util.AbstractIOIOActivity.IOIOThread#loop()

	 									*/

	 								@Override

	 								protected	void	loop()	throws	ConnectionLostException	{

	 																led_.write(!button_.isChecked());

③	 																powertail_.write(!powertailbutton_.isChecked());	

	 																try	{

	 																								sleep(10);

	 																}	catch	(InterruptedException	e)	{

	 																}

	 								}

	 }

Initialize	the	DigitalOutput	powertail_	object.

Assign	the	powertail_	object	to	the	IOIO’s	digital	pin	out	3.

Turn	on	or	off	the	digital	signal	(i.e.,	make	it	High	or	Low)	to	IOIO’s	digital
pin	out	3	when	the	onscreen	toggle	button	for	the	PowerSwitch	Tail	is
toggled	on	or	off.

When	the	onscreen	PowerSwitch	Tail	toggle	button	is	switched	on,	it	will
instruct	the	powertailbutton_	instance	to	send	a	5V	signal	from	digital	pin	3.	This	in
turn	will	electrify	the	PowerSwitch	Tail	relay	to	power	on,	which	will	then
electrify	the	12V	power	adapter	that	will	ultimately	electrify	and	release	the
lock.

Save	your	changes,	compile	the	Android	application,	and	install	the	modified
HelloIOIO	program	on	the	phone.	Check	to	ensure	that	your	door	hardware
circuit	is	properly	wired	and	powered.	Then	plug	in	the	USB	cable	between	the
phone	and	the	IOIO	board	and	execute	the	modified	HelloIOIO	program	on	the
phone.

If	nothing	happens,	verify	that	the	USB	Debugging	option	is	checked	on	the
phone.	Also,	make	sure	your	wiring	is	connected	correctly.	If	you	have	access	to
a	multimeter	or	an	oscilloscope,	check	to	see	that	5	volts	are	flowing	from	the
digital	pin	3	when	the	onscreen	PowerSwitch	Tail	toggle	switch	is	set	to	the	on
position.	If	the	output	is	less	than	5	volts,	there	will	not	be	enough	of	a	signal
from	the	IOIO	board	to	electrify	the	PowerSwitch	Tail	and	thus	power	the
electric	door	latch.

Now	that	the	hardware	is	working	properly,	we	will	network-enable	the	lock	so
we	can	open	it	by	requesting	a	URL	from	a	web	server	that	we	will	add	to	this
modified	HelloIOIO	program.

9.4	Writing	the	Android	Server
Time	to	write	the	door	lock	server.	Instead	of	relying	on	a	personal	computer	to
perform	the	heavy	lifting	of	running	Python	scripts	to	respond	to	incoming
requests,	we	are	going	to	use	the	computing	power	embedded	in	the	Android
smartphone	itself.	Even	older	Android	phones	are	computationally	more
powerful	than	desktop	computers	were	only	a	few	years	before	the	Android	OS
was	introduced.

Besides,	an	Android	phone	acting	as	this	project’s	server	offers	a	number	of
advantages:

Power	requirements	are	far	lower	than	a	desktop	computer,	making	for
much	greener	energy	consumption.

The	phone	has	onboard	Wi-Fi,	allowing	it	to	be	placed	anywhere	within
range	of	the	home’s	wireless	access	point.

The	phone	has	an	onboard	camera	that	can	be	programmed	using	standard
SDK	calls	to	capture	images.

The	phone	has	other	features	like	Bluetooth	and	speech	synthesis	that	we
will	be	using	in	the	Chapter	10,	Giving	Your	Home	a	Voice	project.

The	phone-based	web	server	application	will	need	to	perform	the	following
functions:

1.	 Establish	a	standard	web	server	instance	and	listen	for	inbound	requests	for
a	specific	URL.

2.	 When	the	URL	is	requested,	send	a	signal	for	five	seconds	to	power	IOIO
board	pin	3.	This	will	release	the	electric	lock	long	enough	to	allow	entry.

3.	 After	the	five	seconds,	use	the	built-in	camera	on	the	web	server	host
device	to	take	a	photo	of	the	person	entering	the	door.

4.	 Send	the	captured	image	as	an	email	attachment	to	a	designated	recipient.

5.	 Return	to	an	idle	state	and	await	another	properly	formatted	inbound
request	to	begin	the	cycle	anew.

In	order	to	construct	the	web	server,	we	will	borrow	code	snippets	from	the	open
source	GNU	GPLv3	Android	Web	Server	project	available	on	Google	Code.[98]
We	will	also	incorporate	code	(generously	posted	by	Jon	Simon)	for	sending
email	messages	with	attachments	from	an	Android	application	without	having	to
rely	on	intents	to	do	so.	[99]

Joe	asks:

What	Is	an	Android	Intent?

According	to	the	Android	developer	documentation,	an	intent	is	“an	abstract	description	of	an
operation	to	be	performed.”[100]	In	layman’s	terms,	intents	are	used	to	transmit	and	receive	messages
between	Android	activities	and	services.	Intents	can	also	send	messages	to	the	same	application	that
generates	them,	though	intents	are	more	frequently	used	to	send	a	message	from	one	application,	say	a
web	browser	that	has	downloaded	an	audio	file,	to	another	application,	such	as	a	music	program.

When	multiple	applications	have	been	registered	to	receive	certain	Intent	messages,	a	pop-up	dialog
box	might	appear,	asking	the	user	to	select	which	application	to	send	the	message	to.	If	you’re	an
experienced	Android	device	user,	you	have	no	doubt	seen	this	pop-up	appear	at	one	time	or	another.
Android	allows	users	to	select	via	a	checkbox	in	the	pop-up	dialog	the	default	application	to	send	such
messages	to	so	as	not	to	annoy	you	with	chronic	pop-ups	all	the	time.

As	a	result	of	such	user	interaction	requirements,	intents	are	rarely	optimal	for	entirely	autonomous
operations,	such	as	sending	email,	since	the	message	receiving	the	Intent	message	(in	this	case,	an
email	application)	might	still	require	user	interaction	to	complete	the	intended	action	(i.e.,	the	user
would	need	to	click	the	Send	button	in	the	email	program	to	actually	send	the	email	message	initiated
by	the	original	Intent-transmitting	program).

Since	most	intents	typically	rely	on	user	interaction,	it	won’t	work	for	our
standalone	web	server	scenario.	Combining	these	two	projects	with	the	IOIO
code	will	allow	our	program	to	autonomously	listen	for	and	react	to	door	unlock
requests.	Lastly,	we	will	rely	on	bits	of	Camera	Sample	code	written	by
Krishnaraj	Varma	to	capture	an	image	and	save	it	on	the	Android’s	SD	card.
[101]	It	will	be	this	image	that	we	will	send	as	an	email	attachment.	However,
before	we	can	start	working	on	this	Android	program	mashup,	we	need	a	more

definitive	way	to	access	the	IP	address	of	the	Android	phone.

Setting	a	Static	IP	Address
By	converting	the	phone’s	Wi-Fi	IP	address	from	a	dynamic	to	a	static	address,	it
will	be	much	easier	to	repeatedly	locate	the	phone	on	a	home	wireless	local	area
network.	If	you	haven’t	already	created	a	static	IP	range	on	your	wireless	router,
either	do	so	or	set	the	IP	address	to	something	higher	than	200,	since	it’s	unlikely
you	will	have	that	many	devices	requesting	an	IP	address	from	the	DHCP	server
in	your	wireless	router	anytime	soon.

You	can	access	the	configuration	setting	on	most	Android	phones	by	selecting
the	Settings	icon,	followed	by	the	Wireless	and	Network	menu	selection.	Then
select	Wi-Fi	settings	and	press	the	menu	button	on	the	Android	phone	itself	to
bring	up	a	pop-up	menu	with	Scan	and	Advanced	selections.	Click	the	Advanced
menu	option.	You	will	then	see	a	screen	of	menu	choices	allowing	you	to	modify
a	number	of	network	settings,	one	of	which	is	a	Use	static	IP	checkbox.	Click
that	checkbox	to	enable	the	ability	to	set	the	Wi-Fi	radio’s	IP,	subnet,	and
gateway	address	as	shown	in	Figure	41,	Configuring	an	Android	device	to	use	a
static	IP.	Set	these	according	to	your	wireless	router	network	configuration.	For
example,	if	your	wireless	network	router	is	leasing	an	address	range	beginning	at
192.168.1.2,	your	settings	can	most	likely	be	configured	to	the	following:

Figure	41.	Configuring	an	Android	device	to	use	a	static	IP

IP	Address:	192.168.1.230

Gateway:	192.168.1.1

Netmask:	255.255.255.0

Set	the	DNS1	and	DNS2	values	to	the	DNS	address	of	your	choice	(I	used
Google’s	Public	DNS	in	my	configuration),	though	it’s	best	to	set	these
addresses	to	the	same	domain	name	servers	that	your	other	network	clients	are
using	to	maintain	consistency	on	your	local	area	network.	When	you	have
entered	the	static	values,	click	the	Menu	button	on	your	Android	device	and
select	the	Save	option.

Test	access	to	the	static	IP	on	the	phone	by	pinging	it	from	another	computer	on
your	network.	If	you	set	up	the	static	IP	address	information	successfully,	you
should	see	positive	ping	results.	If	not,	check	your	settings	and	be	sure	to	save
your	changes.	With	the	static	IP	address	confirmed,	we’re	ready	to	proceed	with
writing	and	testing	some	Android	web	server	code.

Creating	an	Android	Web	Server
Android	runs	a	modified	version	of	the	Java	Virtual	Machine	and	as	such,	brings
to	it	a	number	of	standard	Java	libraries.	That’s	a	good	thing,	since	one	of	the
libraries	helps	to	make	creating	and	running	a	web	server	trivial	by	using	just	a
few	lines	of	code.

Rather	than	taking	up	book	space	showing	the	contents	of	the	dozens	of	files	that
comprise	the	full	program	listing,	visit	the	book’s	website	and	download	the
DoorLockServer.zip	file.	Once	downloaded	and	uncompressed,	import	the	project
into	your	Android	SDK-configured	Eclipse	environment	via	the	File->Import...
menu	option.	If	you	examine	the	file’s	contents,	you	will	notice	a	file	named
AndroidDoorLockServerActivity.java.	Look	for	the	two	lines	of	code	in	the	private	void
startServer(int	port)	method	that	uses	the	Android	phone’s	Wi-Fi	IP	address,	port

number,	and	default	message	handler	to	start	the	web	server	on	the	phone.

	 server	=	new	Server(ipAddress,port,mHandler);

	 server.start();

This	instruction	imports	the	ServerSocket	reference	and	tells	Android	to	listen
for	requests	on	port	80	on	our	assigned	static	IP	address.	Naturally,	there	is	much
more	to	manage,	such	as	starting	and	stopping	the	server	from	the	UI,	making
the	server	a	service	so	Android	keeps	it	running	in	the	background,	keeping	the
phone	from	entering	sleep	mode,	acting	on	inbound	requests,	and	handling
errors.

Now	that	we	have	the	basic	requirements	for	running	a	web	server	from	an
Android	device,	the	next	task	we	need	to	tackle	is	to	combine	it	with	the	IOIO
board	functionality	we	enabled	in	Section	9.3,	Controlling	the	Android	Door
Lock.

Web	Server	+	IOIO	Board
This	is	where	things	get	interesting.	By	combining	the	IOIO	test	application	we
wrote	in	Section	9.3,	Controlling	the	Android	Door	Lock,	with	the	web	server	in
the	last	section,	an	inbound	HTTP	request	will	trigger	digital	pin	3	on	the	IOIO
board.	This	will	signal	the	PowerSwitch	Tail	to	allow	power	to	go	to	the	electric
door	strike.	Essentially,	we	will	transplant	the	IOIO	trigger	routine	into	the	web
server’s	response	to	an	HTTP	request.	For	example,	calling	a	URL	like
http://192.168.1.230	will	ultimately	energize	the	door	lock	and	allow	entry.

We	don’t	want	to	leave	the	door	permanently	unlocked	by	keeping	digital	pin	3
on,	so	we	will	have	to	turn	off	power	after	a	set	amount	of	time.	Five	seconds
should	be	adequate	for	our	testing	purposes.	To	do	so,	we	will	call	upon
Android’sThread.sleep()	function	to	pause	program	execution	for	a	set	duration.
Experienced	Android	application	developers	know	that	this	isn’t	the	most
elegant	way	to	handle	pausing	program	execution	because	it	can	make	user
interface	elements	appear	unresponsive.	However,	since	the	Android	device	will
be	used	as	a	server	rather	than	a	client,	we	won’t	have	to	worry	too	much	about
optimizing	the	interactive	user	experience	for	this	program.	I	set	the	delay	to	five

seconds	(Thread.sleep(5000)),	though	you’re	welcome	to	change	that	value	to	close
the	lock	sooner	or	later,	depending	on	your	response	time	needs.

As	before,	refer	to	the	code	in	the	DoorLockServer.zip	file.	Open	the	project	in
Eclipse	and	focus	on	the	AndroidDoorLockServerActivity	class.	Note	the	use	of	the	try
block	that	activates	power	to	the	PowerSwitch	Tail	for	five	seconds	and	makes
the	camerasurface.startTakePicture()	call	to	the	photo	capture	routine	that	will	use	the
built-in	Android	camera.

AndroidDoorLock/DoorLockServer/src/com/mysampleapp/androiddoorlockserver/AndroidDoorLockServerActivity.java
	 @Override

	 protected	void	loop()	throws	ConnectionLostException	{

	
	 		if	(mToggleButton.isChecked())	{

	 				if	(LockStatus.getInstance().getLockStatus())	{

	 										try	{

	 												powertail_.write(false);

	 																//	pause	for	5	seconds	to	keep	the	lock	open

	 																sleep(5000);

	 																powertail_.write(true);

	 																LockStatus.getInstance().setMyVar(false);

	 																//	Take	a	picture	and	send	it	as	an	email	attachment

	 																camerasurface.startTakePicture();

	 																}	catch	(InterruptedException	e)	{

	 																								}

	 																}else	{

	 																		try	{

	 																				sleep(10);

	 																		}	catch	(InterruptedException	e)	{

	 																}

	 																}

	 								}	else	{

	 																powertail_.write(true);

	 								}

	 }

Compile	and	run	this	DoorLockServer	project	on	your	Android	device.	Start	the
web	server	on	your	Android	device.	Make	sure	it	is	properly	connected	to	the
IOIO	board	and	the	board	is	correctly	wired	to	the	PowerSwitch	Tail.	Access	the
IP	address	of	the	web	server	using	any	web	browser	that	can	access	your	local

http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/DoorLockServer/src/com/mysampleapp/androiddoorlockserver/AndroidDoorLockServerActivity.java

area	network.	If	all	goes	according	to	plan,	your	electric	door	lock	should	unlock
for	several	seconds	and	then	relock.	Cool!

We’re	two-thirds	finished	with	this	project.	The	final	component	is	to	take
advantage	of	the	fact	that	most	Android	devices	(at	least	the	Android	phones)
have	a	built-in	camera.	We’re	going	to	take	advantage	of	that	hardware	asset	by
snapping	a	photo	inside	the	door	area	several	seconds	after	an	unlock	request
and	sending	that	photo	to	a	designated	email	recipient.	This	way	you	know	not
only	when	an	unlock	request	occurred	but	also	who	entered	the	door	at	the
designated	time.

Taking	a	Picture
For	this	part	of	the	project,	examine	the	CameraSurface.java	file	in	the	unzipped
DoorLockServer	directory.	The	key	functions	used	to	establish	a	camera	surface	and
image	capture	are	well	documented	in	the	Android	SDK,	and	literally	hundreds
of	Android	photo-capturing	code	snippets	and	tutorials	are	available	on	the
Internet.[102]	I	based	the	image	capture	portion	of	the	web	server	application	off
of	Android	developer	Krishnaraj	Varma’s	Camera	sample.

Setting	up	the	camera	for	use	in	an	Android	application	requires	us	to	import
several	Android	namespaces.	To	do	so,	we	will	need	to	perform	a	few	additional
steps	to	set	up	the	display	surface.	The	key	libraries	being	used	by	the	image
capture	portion	of	the	program	included	in	the	DoorLockServer.zip	file	are	as
follows:

AndroidDoorLock/DoorLockServer/src/com/mysampleapp/androiddoorlockserver/CameraSurface.java
	 import	android.content.Context;

	 import	android.hardware.Camera;

	 import	android.hardware.Camera.AutoFocusCallback;

	 import	android.hardware.Camera.PictureCallback;

	 import	android.hardware.Camera.ShutterCallback;

	 import	android.util.AttributeSet;

	 import	android.view.GestureDetector;

	 import	android.view.MotionEvent;

	 import	android.view.SurfaceHolder;

	 import	android.view.SurfaceView;

	 import	android.view.GestureDetector.OnGestureListener;

http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/DoorLockServer/src/com/mysampleapp/androiddoorlockserver/CameraSurface.java

In	addition	to	accessing	the	camera	hardware	itself,	we	also	need	to	have	the
phone	display	a	preview	of	the	image	being	captured	by	the	camera.	To	do	so,
we	will	first	have	to	initialize	the	camera	frame	and	surface	variables:

	 private	FrameLayout	cameraholder	=	null;

	 private	CameraSurface	camerasurface	=	null;

These	are	used	to	allocate	the	surface	and	frame	objects	accordingly:

	 camerasurface	=	new	CameraSurface(this);

	 cameraholder.addView(camerasurface,	new

	 LayoutParams(LayoutParams.FILL_PARENT,	LayoutParams.FILL_PARENT));

Krishnaraj	uses	callbacks	to	wait	for	certain	operations	to	finish	before
proceeding.	Examples	of	this	include	waiting	for	autofocus	to	set,	waiting	for	the
shutter	to	close,	and	waiting	for	the	validation	that	image	data	has	been
successfully	written	to	the	SD	card.	The	use	of	callbacks	ensures	that	these
events	happen	in	serial	fashion	such	that	one	won’t	begin	until	the	other	ends.

AndroidDoorLock/DoorLockServer/src/com/mysampleapp/androiddoorlockserver/CameraSurface.java
	 public	void	startTakePicture(){

	 		camera.autoFocus(new	AutoFocusCallback()	{

	 				@Override

	 						public	void	onAutoFocus(boolean	success,	Camera	camera)	{

	 								takePicture();

	 						}

	 				});

	 }

	
	 public	void	takePicture()	{

	 		camera.takePicture(

	 								new	ShutterCallback()	{

	 										@Override

	 										public	void	onShutter(){

	 												if(null	!=	callback)	callback.onShutter();

	 										}

	 								},

	 								new	PictureCallback()	{

	 										@Override

	 										public	void	onPictureTaken(byte
[]	data,	Camera	camera){

	 												if(null	!=	callback)	callback.onRawPictureTaken(data,	camera);

http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/DoorLockServer/src/com/mysampleapp/androiddoorlockserver/CameraSurface.java

	 										}

	 								},

	 								new	PictureCallback()	{

	 										@Override

	 										public	void	onPictureTaken(byte
[]	data,	Camera	camera){

	 												if(null	!=	callback)	callback.onJpegPictureTaken(data,	camera);

	 										}

	 								});

	 		}

The	act	of	writing	data	to	the	SD	card	occurs	in	the	onJpegPictureTaken	event.
Since	this	image	file	is	going	to	be	sent	as	an	email	attachment	and	it’s	not
necessary	to	store	successive	captures	on	the	SD	card,	the	image	data	is	saved
with	the	same	filename	each	time	a	photo	is	taken.

	 FileOutputStream	outStream	=	new	FileOutputStream(String.format(

	 "sdcardcapture.jpg"));

	
	 outStream.write(data);

	 outStream.close();

Note	that	if	you	prefer	to	store	each	progressive	image	capture	on	the	phone’s
SD	card	rather	than	overwrite	it	with	the	same	filename,	you	can	append	a
timestamp	to	the	suffix	of	the	filename	using	Krishnaraj’s	original	Camera	code:

	 FileOutputStream	outStream	=	new	FileOutputStream(String.format(

	 "sdcard%d.jpg",	System.currentTimeMillis()));

However,	I	don’t	recommend	this	approach	unless	you	have	plenty	of	storage
capacity	on	your	SD	card	and	don’t	mind	the	duplication	of	image	data	on	the
phone	and	in	your	email	inbox.	If	you	do	opt	for	this	file	naming	method,	you
will	also	need	to	save	the	timestamped	filename	so	you	can	later	pass	it	when
calling	the	email	attachment	instruction	in	the	program.	Now	let’s	look	at	how	to
attach	the	image	data	to	the	email	and	send	it.

Sending	a	Message
Now	that	we	have	captured	and	stored	the	camera-captured	temporary	image	on
the	Android’s	SD	card,	we	need	to	rely	on	a	self-contained	email	routine	that

will	email	the	attached	photo	without	any	user	interface	interaction.	Fortunately
for	this	project,	we	can	call	upon	Jon	Simon’s	JavaMail	for	Android-enhanced
email	routine.	Download	and	reference	the	custom	JavaMail	for	Android	jar
dependencies	for	Jon’s	email	code	to	work	properly.[103]	We	can	then	modify
the	code	to	account	for	our	image	attachment	needs.	To	do	so,	we	first	need	to
import	a	number	of	Java	libraries	used	by	the	JavaMail	class:

	 import	java.util.Date;

	 import	java.util.Properties;

	 import	javax.activation.CommandMap;

	 import	javax.activation.DataHandler;

	 import	javax.activation.DataSource;

	 import	javax.activation.FileDataSource;

	 import	javax.activation.MailcapCommandMap;

	 import	javax.mail.BodyPart;

	 import	javax.mail.Multipart;

	 import	javax.mail.PasswordAuthentication;

	 import	javax.mail.Session;

	 import	javax.mail.Transport;

	 import	javax.mail.internet.InternetAddress;

	 import	javax.mail.internet.MimeBodyPart;

	 import	javax.mail.internet.MimeMessage;

	 import	javax.mail.internet.MimeMultipart;

Methods	for	public	Mail(String	user,	String	pass)	and	public	void	addAttachment(String

filename)	throws	Exception	allow	us	to	easily	send	the	captured	image	file	to	a
designated	recipient.	Sending	a	message	is	straightforward	once	the	username,
password,	recipient,	and	attachment	parameters	are	defined	in	onJpegPictureTaken()
found	in	the	AndroidDoorLockServerActivity.java	file:

	 try	{

	 				GMailSender	mail	=	new	GMailSender("YOUR_GMAIL_ADDRESS@gmail.com",

	 																				"YOUR_GMAIL_PASSWORD");

	 				mail.addAttachment(Environment.getExternalStorageDirectory()	+

	 						"/capture.jpg");

	 				String
[]	toArr	=	{"EMAIL_RECIPIENT_ADDRESS@gmail.com"};

	 				mail.setTo(toArr);

	 				mail.setFrom("YOUR_GMAIL_ADDRESS@gmail.com");

	 				mail.setSubject("Image	capture");

	 				mail.setBody("Image	captured	-	see	attachment");

	 				if(mail.send())	{

	 								Toast.makeText(AndroidDoorLockServerActivity.this,

	 																												"Email	was	sent	successfully.",

	 																												Toast.LENGTH_LONG).show();

	 						}	else	{

	 								Toast.makeText(AndroidDoorLockServerActivity.this,

	 																												"Email	was	not	sent.",

	 																												Toast.LENGTH_LONG).show();

	 						}

	 }	catch	(Exception	e)	{

	 				Log.e("SendMail",	e.getMessage(),	e);

	 }

Replace	YOUR_GMAIL_ADDRESS@gmail.com,	YOUR_GMAIL_PASSWORD,	and
EMAIL_RECIPIENT_ADDRESS@gmail.com	with	your	Gmail	account	credentials.	Note
that	the	recipient	does	not	have	to	be	a	Gmail	user,	so	you	can	send	the	message
to	a	non-Gmail	account	if	you	prefer	to	do	so.

There	are	a	few	other	preparatory	instructions	that	are	part	of	the	email
transmission	process.	Examine	the	downloaded	code	for	a	better	understanding
of	all	the	dependencies	and	processes	that	take	place	to	send	a	message	from	an
Android	device	without	user	intervention.

Setting	Hardware	Permissions
We’re	almost	done.	By	combining	four	separate	Android	programs	into	one,	we
are	able	to	listen	for	an	inbound	HTTP	request,	unlock	the	electric	door	latch	via
the	IOIO	board,	take	a	picture	using	the	built-in	camera	on	the	Android	device,
and	send	that	image	as	an	email	attachment.

With	the	photo	capturing	and	email	transmitting	code	in	place,	all	that	remains	is
to	allow	the	program	to	access	the	camera,	Wi-Fi	radio	hardware,	and	network	to
complete	its	task.	As	such,	the	AndroidManifest.xml	file	will	need	to	contain
permissions	to	access	not	only	the	network	and	Wi-Fi	stack	but	also	the	camera
and	SD	card:

	 <?xml	version="1.0"	encoding="utf-8"?>

	 <manifest	xmlns:android="http://schemas.android.com/apk/res/android"

	 		package="com.mysampleapp.androiddoorlockserver"

	 		android:versionCode="1"

	 		android:versionName="1.0"
>

	 		<uses-sdk	android:minSdkVersion="3"	/>

	
		<uses-permission	android:name="android.permission."
>
</uses-permission>

	 		<uses-permission	android:name="android.permission.ACCESS_WIFI_STATE"
>

	 		</uses-permission>

	 		<uses-permission	android:name="android.permission.INTERNET"
>

	 		</uses-permission>

	 		<uses-permission	android:name="android.permission.WAKE_LOCK"	/>

	 		<uses-feature	android:name="android.hardware.camera"	/>

	 		<uses-feature	android:name="android.hardware.camera.autofocus"
/>

	 		<uses-permission	android:name="android.permission.CAMERA"
/>

	 		<uses-permission	android:name="android.permission.VIBRATE"
/>

	 		<uses-permission

	 								android:name="android.permission.WRITE_EXTERNAL_STORAGE"	/>

	 		<application	android:icon="@drawable/icon"

	 																			android:label="@string/app_name"
>

	 				<activity	android:name=".AndroidDoorLockServerActivity"

	 														android:label="@string/app_name"

	 														android:screenOrientation="landscape"
>

	 								<intent-filter>

	 														<action	android:name="android.intent.action.MAIN"	/>

	 														<category

	 																				android:name="android.intent.category.LAUNCHER"	/>

	 								</intent-filter>

	 				</activity>

	 		</application>

	 </manifest>

After	setting	the	email	account	username,	password,	and	recipient	values	as	well
as	the	IP	address	for	your	network,	you	can	compile,	install,	and	run	the	Android
Door	Lock	server	application	on	your	Android	smartphone.

Testing	the	Server
Test	out	the	Android	door	lock	server	by	accessing	its	base	URL	from	a	web
browser.	Verify	that	the	electric	lock	releases	and	that	the	camera	takes	a	photo
and	sends	the	image	to	the	designated	email	recipient.	If	everything	worked	as

expected,	congratulate	yourself	on	a	job	well	done.	Considering	how	many
dependencies	are	involved	with	this	project,	getting	everything	to	work	just	right
the	first	time	out	is	indeed	a	cause	for	celebration.	If	something	went	awry,
carefully	troubleshoot	each	function	separately.	Does	the	web	server	respond	to
requests?	Does	the	PowerSwitch	Tail	electrify?	Does	the	camera	shutter	snap?
Also,	depending	on	your	network	connection	and	the	speed	of	Wi-Fi
connectivity	of	your	Android	phone,	it	can	sometimes	take	up	to	a	minute	to
transmit	the	photo	via	email.

We	have	accomplished	quite	a	bit	of	this	project	already,	and	for	the	most	part,
we	could	simply	set	a	bookmark	for	the	door	lock	URL	and	call	it	a	day.	But	let’s
invest	just	a	little	more	effort	by	creating	a	custom	client	for	accessing	the	door
lock	URL	like	we	did	for	the	Chapter	7,	WebEnabled	Light	Switch	project.	That
way,	we	can	quickly	access	the	door	lock	via	a	one-click	button.	Indeed,	we	can
begin	amassing	our	home	automation	features	into	a	über-controller	mobile
program	that	accesses	our	projects	in	a	single	collective	interface.

9.5	Writing	the	Android	Client
Writing	code	for	the	Android	client	to	send	unlock	commands	to	the	Android
server	is	easy.	Let’s	reuse	code	from	the	Web	Enabled	Light	Switch	Android
client	application	to	provide	easy	user	access	to	the	door	latch	function.	This
time,	we	will	use	a	button	instead	of	a	toggle	switch	since	we	already
programmed	the	lock	to	unlock	for	five	seconds.	This	makes	the	toggle
unnecessary.	Another	feature	we	will	add	to	this	application	is	to	turn	on	the	Wi-
Fi	radio	if	it	isn’t	already	active.

Security	Implications
One	advantage	of	creating	a	custom	Android	client	for	unlocking	a	door	is	so	that
we	also	maintain	(albeit	very	weak)	security	via	obscurity	to	access	the	door
lock.	By	not	allowing	a	display	of	the	bookmark	URL	on	the	screen	when	we
access	the	web	server,	we	keep	its	address	hidden	from	nontechnical	onlookers.
However,	this	will	only	be	adequate	in	low	network	security	scenarios,	since	the
URL	itself	is	sent	to	the	server	in	the	clear.	Later,	in	the	Next	Steps	section	of	this
chapter,	one	of	the	recommended	enhancements	is	to	consider	adding	better
security	to	the	project.	The	addition	of	a	passcode	or,	better	still,	a	sophisticated
multifactor	authentication	scheme,	will	be	a	much	better	door	lock	system	in	the
long	run.

The	basic	flow	of	the	program	will	be	to	launch	it	and	check	for	Wi-Fi	access.	If
the	Wi-Fi	radio	is	turned	off,	turn	it	on	and	wait	for	the	client	to	connect	to	the
network.	Allow	the	user	to	press	the	displayed	Unlock	Door	button,	which	will
access	the	Android	Door	Lock	server	URL	and	unlock	the	door.	Briefly,	here	are
the	steps	we	will	take	to	code	the	unlock	client:

1.	 Create	an	Android	project	in	Eclipse	called	DoorLockClient.

2.	 Check	if	the	Wi-Fi	radio	is	on	in	the	program’s	main	activity.	If	Wi-Fi	is
turned	off,	activate	it.

3.	 Add	a	Button	to	the	main.xml	layout	description	and	label	it	“Unlock
Door.”

4.	 Reference	the	button	in	the	DoorLock	class	and	a	listener	for	the	button
press	event.	If	the	Wi-Fi	radio	is	being	turned	on	for	the	first	time	when	the
program	starts,	keep	the	Unlock	Door	button	disabled	for	a	few	seconds	to
allow	the	Wi-Fi	interface	to	authenticate	with	the	wireless	access	point	and
establish	the	client’s	IP	address.

5.	 Add	the	URL	request	call	in	the	button	press	event	to	the	Android	Door
Lock	server	(ex:	192.168.1.230).

We	will	start	by	following	the	same	procedure	used	in	Section	7.6,	Writing	the
Code	for	the	Android	Client.	Create	a	new	Android	project	in	Eclipse	using	the
parameters	shown	in	Figure	42,	Settings	for	the	new	Door	Lock	Client
application.

Figure	42.	Settings	for	the	new	Door	Lock	Client	application

Add	a	button	called	unlockbutton,	label	its	text	“Unlock	Door,”	and	set	the
button’s	width	to	fill	the	LinearLayout	of	the	parent	container.	The	main.xml	file
should	look	like	this:

	 																<?xml	version="1.0"	encoding="utf-8"?>

	 <LinearLayout	xmlns:android="http://schemas.android.com/apk/res/android"

	 				android:orientation="vertical"

	 				android:layout_width="fill_parent"	android:layout_height="fill_parent"
>

	 				<Button	android:id="@+id/unlockbutton"	android:layout_height="wrap_content"

	
				android:text="Unlock	Door"	android:layout_width="fill_parent"
>
</Button>

	 </LinearLayout>

Save	the	changes.	Open	the	DoorLockClient.java	file	and	add	references	for	the
unlockbutton	Button	element	and	its	event	listener.	Also	add	Wi-Fi	radio	detection
and	activation.	The	full	listing	for	the	DoorLockClient.java	class	should	look	like
this:

AndroidDoorLock/DoorLockClient/src/com/mysampleapp/doorlockclient/DoorLockClient.java
	 package	com.mysampleapp.doorlockclient;

	
①	 import	java.io.InputStream;	

	 import	java.net.URL;

	 import	android.net.wifi.WifiManager;

	 import	android.widget.Button;

	 import	android.app.Activity;

	 import	android.os.Bundle;

	 import	android.util.Log;

	 import	android.view.View;

	
	 public	class	DoorLockClient	extends	Activity	{

	 				/**	Called	when	the	activity	is	first	created.	*/

	 				@Override

	 				public	void	onCreate(Bundle	savedInstanceState)	{

	 								super.onCreate(savedInstanceState);

	 								setContentView(R.layout.main);

②	 								Button	unlockbutton	=	(Button)	findViewById(R.id.unlockbutton);	

	 								findViewById(R.id.unlockbutton).setOnClickListener

	 								(mClickListenerUnlockButton);

	 										try	{

	 														WifiManager	wm	=

③	 														(WifiManager)	getSystemService(WIFI_SERVICE);	

	 														if	(!wm.isWifiEnabled())	{

	 																		unlockbutton.setEnabled(false);

	 																		wm.setWifiEnabled(true);

	 																		//	Wait	17	seconds	for	Wi-Fi	to	turn	on	and	connect

	 																		Thread.sleep(17000);

	 																		unlockbutton.setEnabled(true);

	 														}

	 										}	catch	(Exception	e)	{

	 														Log.e("LightSwitchClient",	"Error:	"	+	e.getMessage(),	e);

	 										}

http://media.pragprog.com/titles/mrhome/code/AndroidDoorLock/DoorLockClient/src/com/mysampleapp/doorlockclient/DoorLockClient.java

①

②

③

④

⑤

	
	 				}

	 				View.OnClickListener	mClickListenerUnlockButton	=

④	 								new	View.OnClickListener()	{	

	 								public	void	onClick(View	v)	{

	 												try	{

	 																final	InputStream	is	=

⑤	 																new	URL("http://192.168.1.230:8000").openStream();	

	 												}

	 												catch	(Exception	e)	{

	 												}

	 								}

	 				};

	 }

Import	the	library	references	for	java.io.InputStream,	java.net.URL	and	Android-
specific	android.widget.Button	and	android.net.wifi.WifiManager.

Add	a	reference	for	the	unlockbutton	Button	and	assign	it	to	the
mClickListenerUnlockButton	View	method.

Query	the	state	of	the	Wi-Fi	radio,	and	if	it’s	not	active,	turn	the	Wi-Fi	radio
on.	Keep	the	unlockbutton	disabled	for	seventeen	seconds	to	allow	enough
time	for	the	network	connection	to	initialize.

Create	the	View.OnClickListener	for	the	unlockbutton.

Request	the	Android	door	lock	server	address	when	the	unlockbutton	is
clicked.

We	have	one	more	task	to	complete	before	we	can	test	out	the	application.
Remember	how	we	had	to	set	permission	to	access	the	network	for	the	Web
Enabled	Light	Switch	Android	client?	We	have	to	do	the	same	thing	for	this
Door	Lock	Client.	We	also	have	to	grant	permission	to	access	the	state	of	the
Wi-Fi	radio	as	well.	These	permissions	are	noted	in	the	AndroidManifest.xml	file,
which	should	look	like	this	once	these	two	permissions	are	added:

	 <?xml	version="1.0"	encoding="utf-8"?>

	 <manifest	xmlns:android="http://schemas.android.com/apk/res/android"

	 		package="com.mysampleapp.doorlockclient"

	 		android:versionCode="1"

	 		android:versionName="1.0"
>

	 		<uses-permission	android:name="android.permission.INTERNET"	/>

	 		<uses-permission	android:name="android.permission.ACCESS_WIFI_STATE"	/>

	 		<uses-permission	android:name="android.permission.CHANGE_WIFI_STATE"	/>

	

	 		<application	android:icon="@drawable/icon"	android:label="@string/app_name"
>

	 				<activity	android:name=".DoorLockClient"

	 												android:label="@string/app_name"
>

	 						<intent-filter>

	 												<action	android:name="android.intent.action.MAIN"	/>

	 												<category	android:name="android.intent.category.LAUNCHER"	/>

	 						</intent-filter>

	 				</activity>

	 		</application>

	 </manifest>

Save	the	project	and	test	it	using	an	available	Android	phone.	First	test	its
operation	with	the	Wi-Fi	radio	turned	on.	The	button	should	be	instantly
accessible	after	the	program	has	launched.	Quit	the	program,	preferably	using	a
task	manager	(i.e.,	make	sure	the	running	instance	of	the	program	is	destroyed
and	not	running	silently	in	the	background).	Next,	turn	off	the	Wi-Fi	radio	and
launch	the	Door	Lock	Client	application	again.	This	time,	the	Unlock	Door
button	will	be	disabled	while	the	program	turns	on	the	Wi-Fi	radio	and	waits
until	a	connection	with	the	network	has	been	established.	If	the	radio	turned	on,
you’re	ready	for	a	live	test	with	the	door	lock	server.

Click	the	Unlock	Door	button.	Within	a	second	or	two,	the	electric	lock	should
click	open	and	then	close	approximately	five	seconds	later.	If	it	did,
congratulations	on	a	job	well	done!	If	it	didn’t,	verify	that	your	Android	device
is	indeed	connected	to	the	network.	Test	the	URL	access	via	the	Android	web
browser.	If	you	can’t	access	the	URL,	make	sure	the	Android	door	lock	server	is
still	set	to	the	static	IP	we	defined	earlier	and	that	it	is	running.	Try	accessing	the
URL	from	a	different	system	just	to	verify	that	the	rest	of	your	home	network
can	access	the	Android	door	lock	server.

9.6	Test	and	Install
Now	that	the	Android	client	is	transmitting	the	URL	request	via	the	toggle
button	interface,	we	are	nearly	finished	with	this	project.	Test	the	lock	and	photo
capture	mechanism	by	powering	up	the	Android	phone	server,	making	sure	all
the	connections	between	the	phone,	IOIO	board,	and	PowerSwitch	Tail	are
connected.	Send	a	request	to	the	Android	phone	server	from	the	other	Android
device	running	the	Android	Door	Lock	client.	Note	that	in	order	to	test	this
request	successfully,	the	client	Android	device	needs	to	be	connected	to	the	same
Wi-Fi	access	point	as	the	Android	phone	server.	Your	test	rig	may	look	like	mine
(Figure	43,	Testing	the	Android	Door	Lock).

Figure	43.	Testing	the	Android	Door	Lock

The	final	task	is	to	actually	install	the	lock	mechanism	in	the	doorframe.	This
can	be	a	daunting	process	if	you	are	not	comfortable	with	boring	out	wood	and
properly	routing	electrical	wiring	behind	drywall.	In	fact,	I	strongly	recommend
that	if	you	intend	to	permanently	install	this	hardware	configuration,	contact	a
reputable	carpenter	and	electrician	to	assist	with	the	installation.	The	extra
money	you	spend	will	be	well	worth	the	safety	and	security	of	your	home,	and	it
will	keep	your	sanity	intact.

When	installing	the	lock,	keep	the	Android	phone,	IOIO	board,	and

PowerSwitch	Tail	in	an	easy,	accessible	location.	It	should	go	without	saying
that	you	shouldn’t	place	these	in	the	wall	in	case	you	need	to	service	or	replace
any	of	these	components	in	the	future,	not	to	mention	that	they	could	pose	a	fire
hazard	if	the	wiring	is	not	correctly	shielded.	I	suggest	obtaining	a	project	box
from	an	electronics	supplier.	The	box	should	be	large	enough	to	fit	all	the
components,	with	room	for	expansion	should	you	need	to	house	additional
hardware	for	project	enhancements.	Always	practice	safe	wiring	techniques.
Once	a	circuit	is	well	established,	I	prefer	soldering	components	in	place	and
then	covering	the	exposed	conductive	surface,	like	circuit	leads	and	stripped
wiring,	with	heat	shrink	tubing	to	prevent	any	shorting	of	the	circuit.	If	you	have
an	electrician	assist	with	the	hardware	installation,	consult	with	this	professional
about	best	practices	and	recommendations	as	well.

9.7	Next	Steps
Congratulations!	You	have	just	completed	one	of	the	most	complex	projects	in
this	book.	You	have	come	a	long	way	and	acquired	a	great	deal	of	knowledge
and	experience.	You	now	have	the	ability	to	automate	a	variety	of	electrical
devices	in	your	own	home.	Our	final	project	will	combine	a	number	of	these
techniques	to	create	an	application	that	will	listen	for	a	number	of	events	and
relay	these	to	you	via	a	text-to-speech	interface.	But	before	we	get	started,
consider	expanding	your	Android	Door	Lock	with	these	additional	features:

Implement	Steve	Gibson’s	Perfect	Paper	Passwords	to	provide	a	more
secure,	multifactor,	one-time	password	authentication	scheme.[104]	By
using	the	Perfect	Paper	Password	approach,	you	will	be	able	to	share	one-
time	use	entry	codes	to	anyone	requiring	secure	access	to	your	home,	such
as	visiting	health	professionals,	house	cleaning	service	personnel,	and
maintenance	workers.

Connect	a	PIR	sensor	to	the	IOIO	board	to	capture	and	transmit	motion-
detected	events.	While	the	current	design	does	something	similar,	it	can	be
problematic	if	entry	to	the	target	area	is	intentionally	or	unintentionally
delayed.	Take	advantage	of	the	numerous	other	analog	and	digital	pins	on
the	IOIO	board	and	hook	up	a	PIR	sensor	like	the	one	we	used	in	Chapter	4,
Electric	Guard	Dog.

Attach	more	than	one	electric	door	lock	to	the	IOIO	Web	Server	program
and	access	these	locks	via	different	URL	paths.	For	example,	open	the	front
door	by	accessing	http://192.168.1.230/frontdoor,	and	the	cellar	door	via
http://192.168.1.230/cellardoor.

Go	beyond	just	controlling	door	locks	from	an	Android	phone.	Electrify
lights,	appliances,	computers,	and	any	other	electrical	device	in	your	home
via	the	IOIO	web	server.	Expand	the	web	server	program	on	your	Android
phone	to	log	events,	email	status	updates,	or	detect	orientation	changes	(i.e,
someone	or	something	moved	the	phone)	via	Android’s	compass	and

accelerometer	sensors.

Footnotes

[85] http://accessories.android.com

[86] http://www.sparkfun.com/products/10747

[87] http://www.adafruit.com/products/327

[88] http://www.sparkfun.com/products/8269

[89] http://www.adafruit.com/products/352

[90] https://groups.google.com/group/ioio-users?pli=1

[91] http://www.sparkfun.com/products/8734

[92] http://www.sparkfun.com/products/10748	and	http://www.sparkfun.com/products/8612

[93] http://www.smarthome.com/5192/Electric-Door-Strike-Mortise-Type/p.aspx

[94] http://www.sparkfun.com/products/10745

[95] http://handbagdevices.com/

[96] https://github.com/ytai/ioio/wiki

[97] http://www.sparkfun.com/tutorials/280

[98] http://code.google.com/p/android-webserver/

[99] http://www.jondev.net/articles/Sending_Emails_without_User_Intervention_%28no_Intents%29_in_Android

[100] http://developer.android.com/reference/android/content/Intent.html

http://accessories.android.com
http://www.sparkfun.com/products/10747
http://www.adafruit.com/products/327
http://www.sparkfun.com/products/8269
http://www.adafruit.com/products/352
https://groups.google.com/group/ioio-users?pli=1
http://www.sparkfun.com/products/8734
http://www.sparkfun.com/products/10748
http://www.sparkfun.com/products/8612
http://www.smarthome.com/5192/Electric-Door-Strike-Mortise-Type/p.aspx
http://www.sparkfun.com/products/10745
http://handbagdevices.com/
https://github.com/ytai/ioio/wiki
http://www.sparkfun.com/tutorials/280
http://code.google.com/p/android-webserver/
http://www.jondev.net/articles/Sending_Emails_without_User_Intervention_%28no_Intents%29_in_Android
http://developer.android.com/reference/android/content/Intent.html

[101] http://code.google.com/p/krvarma-android-samples/

[102] http://developer.android.com/reference/android/hardware/Camera.html

[103] http://code.google.com/p/javamail-android/

[104] https://www.grc.com/ppp.htm

Copyright	©	2012,	The	Pragmatic	Bookshelf.

http://code.google.com/p/krvarma-android-samples/
http://developer.android.com/reference/android/hardware/Camera.html
http://code.google.com/p/javamail-android/
https://www.grc.com/ppp.htm

Chapter	10

Giving	Your	Home	a	Voice
Wouldn’t	it	be	cool	to	walk	into	your	front	door	and	be	greeted	by	your	home,
having	it	inform	you	of	any	important	events	that	occurred	while	you	were
away?	How	about	asking	your	home	to	check	your	email	inbox	status,	read	you
the	weather	forecast,	or	queue	up	your	favorite	music	on	the	stereo?	It	could	also
audibly	inform	you	of	triggered	sensors	in	real	time,	such	as	telling	you	about
water-level	alerts	or	birdseed	refillings	from	our	first	two	projects.	(See	Figure
44,	Event	notification.)	This	project	will	bring	those	fanciful	ideas	to	life.	We
will	create	a	central	hub	capable	of	relaying	the	communication	from	all	the
other	projects	we	built	in	this	book	and	do	so	in	a	natural	speaking	voice.

Receiving	emails	and	tweets	about	what’s	going	on	in	your	home	is	pretty	neat,
but	wouldn’t	it	be	even	cooler	if	you	could	have	a	conversation	with	your	home?
What	if	you	could	ask	it	questions	like	“What	time	is	it?”	or	dictate	commands
like	“Turn	on	the	lights”	or	“Listen	to	music”	and	have	your	home	respond	in
kind.	That’s	what	we’re	going	to	program	in	this	capstone	project	that	brings
together	network-enabled	projects	like	the	Web-Enabled	Light	Switch	and	the
Android	Door	Lock	and	controls	them	via	voice	command.

While	we’re	at	it,	we	will	hook	into	a	few	other	nice-to-have	vocal	commands
like	selecting	musical	artists	and	their	respective	albums	for	audio	playback	on
the	stereo,	turning	up	and	down	the	volume,	and	so	on.

Figure	44.	Event	notification.	Let	your	home	tell	you	when	automation
events	occur	with	your	projects.

10.1	What	You	Need
While	we	could	develop	this	project	on	Windows	using	Microsoft’s	Speech	API
or	on	Linux	using	the	open	source	Festival	project,	I	chose	the	Mac	platform
because	I	personally	find	the	Text-to-Speech	(TTS)	renditions	in	OS	X	10.7	(aka
Lion)	to	be	the	best	of	the	voices	that	ship	between	the	three	operating	systems.
Most	Mac	users	don’t	know	these	voices	exist,	let	alone	that	downloading
additional	OS	X	voices	can	expand	your	choices.

Here	are	the	items	you	will	need	to	put	this	project	into	action:

An	Apple	Mac	computer	running	OS	X	10.7	(Lion)	or	higher

A	home	stereo	with	standard	3.5mm	or	RCA	audio	input	jacks

One	of	the	following:

A	male-to-male	stereo	miniplug	cable	to	connect	the	Mac	to	your
home	stereo,	or

A	3.5mm	stereo	headphone-to-RCA	adapter	cable	if	your	stereo	only
uses	standard	RCA	input	jacks,	or

A	wireless	Bluetooth	speaker,	such	as	the	Supertooth	DISCO[105]

A	wireless	microphone	and	receiving	station,	such	as	the	Radio	Shack
Wireless	Lapel	Microphone	System[106]

A	3.5mm	headphone-to-USB	adapter	to	send	the	wireless	mic	station’s
audio	into	the	Mac,	such	as	Griffin	Technology’s	iMic[107]

Before	we	listen	to	the	computer	voices,	we	first	need	to	be	able	to	reproduce	the
Mac’s	spoken	audio	on	a	set	of	speakers,	whether	they	be	attached	to	the	Mac,
connected	via	a	stereo,	or	transmitted	to	a	wireless	Bluetooth	speaker.

10.2	Speaker	Setup
The	speaker	being	used	to	amplify	the	computer’s	audio	is	a	key	factor	in	this
project’s	success.	The	speaker	needs	to	be	loud	enough	to	be	heard	from	one	or
more	rooms	away	and	ideally	should	be	heard	throughout	the	house	if	possible.
Let’s	take	a	look	at	both	wired	and	wireless	approaches.

The	quickest	way	to	connect	a	Mac	computer	up	to	a	home	stereo	is	by	using	a
male-to-male	3.5mm	stereo	headphone	to	an	RCA	adapter	cable.	This	cable	will
run	from	the	Mac’s	headphone	jack	to	the	stereo	amplifier	and/or	receiver’s
audio	input	jack.	If	your	home	stereo	doesn’t	support	a	3.5mm	input	jack,	you
will	need	a	3.5mm	female-to-RCA-male	audio	cable.	The	length	of	the	cable
needs	to	comfortably	run	from	the	computer	to	the	stereo,	so	take	that	into
consideration	when	purchasing	the	cable	from	your	preferred	audio-video
supplier.

If	the	computer	and	stereo	are	separated	by	several	rooms,	you	will	be	running	a
lot	of	wire	and	probably	need	to	drill	a	few	holes	in	the	process.	If	you	don’t
want	to	operate	the	computer	in	the	same	room	as	the	stereo	and	don’t	like	the
idea	of	fishing	wiring	through	walls	to	connect	the	two,	consider	a	wire-free
alternative.	If	this	is	your	situation,	I	recommend	using	the	external	Bluetooth
speaker	option	since	it	offers	the	most	flexibility.

Pairing	an	external	Bluetooth	speaker	with	the	Mac	is	easy.	Simply	turn	on
Bluetooth	on	the	Mac	via	the	Bluetooth	System	Preference	pane.	Then	power	up
the	external	Bluetooth	speaker	and	set	it	to	pair	with	your	computer.	This	is
typically	done	by	holding	down	the	power	button	on	the	speaker	until	the
speaker’s	Bluetooth	indicator	light	starts	flashing.	Then	click	the	Set	Up	New
Device...	button	on	the	Mac’s	Bluetooth	Preference	Pane.	This	should	auto-
detect	the	Bluetooth	speaker.	In	the	case	of	the	Supertooth	DISCO	speaker,	it
displays	“ST	DISCO	R58”	on	my	Mac,	as	shown	in	Figure	45,	Bluetooth
wireless	speaker	pairing.

Figure	45.	Bluetooth	wireless	speaker	pairing

Select	the	speaker	name.	Depending	on	the	Bluetooth	speaker	you	are
connecting	to,	it	may	automatically	establish	a	connection	or	it	may	require	a
four-digit	confirmation	code	such	as	0000	or	1234	to	be	typed	in	on	the	screen.
In	the	case	of	the	Supertooth	DISCO	speaker,	my	Mac	automatically	configured
the	speaker	without	requiring	any	confirmation	codes.

If	the	discovery	and	configuration	went	smoothly,	you	should	receive	a
confirmation	message	on	the	screen	that	pairing	with	the	speaker	was	successful.
Go	to	the	Sound	option	in	System	Preferences	and	select	the	speaker	in	the
Output	tab.	Then	use	the	iTunes	music	application	on	your	Mac	to	play	back
audio	and	verify	that	you	can	indeed	hear	the	sound	reproduced	on	the	paired
speaker.	Conclude	your	pairing	confirmation	testing	by	entering	the	Speech
option	in	System	Preferences	and	then	selecting	the	Text	to	Speech	tab.	Click	the
Play	button.	If	you	hear	the	TTS	playback	on	the	speaker,	your	talking	Mac
hardware	setup	is	successfully	configured.	Set	the	volume	on	the	speaker	and
dial	up	or	down	the	output	volume	level	on	the	Mac	to	get	the	sound	output	just

right	for	the	audio	coverage	area	you	have	in	mind.

Why	Bluetooth	Audio?
Bluetooth	wireless	audio	capabilities	are	available	in	most	Mac	computers.	Using
it	will	give	you	maximum	flexibility	when	placing	the	computer	and	external
Bluetooth	speaker	in	different	locations.	Rather	than	running	an	audio	cable	from
the	computer	to	a	stereo,	we	can	rely	on	high	fidelity	wireless	Bluetooth	audio
that	can	broadcast	up	to	thirty	feet	away.

There	are	trade-offs	between	these	wired	and	wireless	audio	configurations.	If
you	need	the	convenience	of	a	wire-free	audio	transmission,	the	external
Bluetooth	speaker	option	is	the	way	to	go.	But	if	you	value	high	fidelity	sound
over	wireless	convenience,	a	wired	connection	to	a	dedicated	stereo
amplifier/receiver	offers	the	best	sound	reproduction	to	multiple	speaker	outputs.
If	you	are	fortunate	enough	to	have	already	prewired	the	rooms	in	your	home	for
stereo	sound,	the	wired	computer-to-stereo	approach	is	the	obvious	choice.

Next	we’ll	configure	the	Mac	to	listen	for	voice	commands	and	respond	with	a
high-quality	voice	response.	Then	we	will	write	an	AppleScript	script	that	will
leverage	OS	X’s	built-in	speech	recognition	server	to	listen	for	specific
commands	and	act	on	them	accordingly.

10.3	Giving	Lion	a	Voice
Before	we	can	talk	to	a	Mac,	we	must	first	enable	its	speech	recognition	server.
Note	that	the	speech	recognition	server	had	been	broken	on	the	OS	X	10.5	and
10.6	releases	and	was	finally	fixed	in	the	10.7	Lion	release.	This	once	again
makes	the	Mac	a	viable	speech	recognition	platform.

In	order	to	configure	the	Mac	to	use	its	speech	recognition	capabilities,	click	on
the	Speech	icon	in	the	System	Preferences	panel,	as	shown	in	Figure	46,
Accessing	OS	X	speech	settings.

Figure	46.	Accessing	OS	X	speech	settings

Select	the	Speech	Recognition	tab	and	turn	on	the	Speakable	Items,	as	shown	in
Figure	47,	Turn	on	speakable	items.

Figure	47.	Turn	on	speakable	items.

Read	the	tips	dialog	box	that	is	displayed	the	first	time	you	enable	this	option
and	take	heed	of	the	recommendations.	Speech	recognition	algorithms	are	not
yet	powerful	enough	to	effortlessly	understand	a	variety	of	dialects,	accents,	and
volume	levels,	but	the	technology	is	getting	better	all	the	time.

I	find	I	have	to	be	especially	loud	and	clear	when	speaking	to	the	Mac,	making
an	effort	to	slowly	enunciate	my	commands	with	almost	no	background	noise.
You	may	also	need	to	play	around	with	microphone	gain	and	placement	from
your	mouth	as	well	as	acclimate	to	the	cadence	for	the	speech	recognizer	to	work
with	the	vocabulary	we’ll	be	defining	in	our	script.	Note	that	the	Mac	sets	the
Microphone	setting	to	use	the	Internal	Microphone	by	default.	We	will	revisit

this	setting	later	when	we	change	this	to	use	the	iMic	adapter,	but	it’s	okay	to
leave	the	setting	as	it	is	for	now.

When	the	Speakable	Items	option	is	activated,	you	will	see	a	round	microphone
graphic	appear	on	your	computer’s	screen.	This	is	the	speech	recognizer
window.	You	activate	the	recognizer	by	holding	down	the	Escape	key	on	the
keyboard.	We	will	remove	this	keyboard	requirement	once	we	have	our	talking
home	script	running	and	our	wireless	microphone	set	up,	but	for	now	we’ll	leave
it	be	so	that	we	can	more	easily	debug	our	script.

Before	closing	the	Speech	preference	panel,	we	have	one	more	option	to	set.
Click	on	the	Text	to	Speech	tab	(see	Figure	48,	Text	to	Speech	settings)	and
select	a	System	Voice	from	the	drop-down	list.

Figure	48.	Text	to	Speech	settings

You	can	preview	voices	by	clicking	the	Play	button.	The	default	voice	is	Alex.

It’s	pretty	good,	but	I	prefer	the	American	female	voice	Samantha.	Since	the
voice	files	are	quite	large,	Apple	doesn’t	ship	all	of	the	selections	with	Lion.
Instead,	you	have	to	obtain	them	by	selecting	the	Customize...	System	Voice
menu	option.	Doing	so	will	display	the	dialog	box	shown	in	Figure	49,	Lion
voice	selections,	which	lists	the	voices	freely	available	for	download	from
Apple.

Figure	49.	Lion	voice	selections

There	are	plenty	of	voices	to	choose	from,	and	you	can	preview	each	one	before
downloading	them	by	clicking	the	Play	button.	Once	you	select	a	voice	that	you
like,	it	may	take	a	while	to	download	and	configure	the	selected	voice	files	on
your	computer,	depending	on	your	Internet	connection	and	Mac	CPU	speed.	As
an	example,	the	Samantha	voice	file	is	over	450	megabytes	in	size.

Once	downloaded	and	installed,	you	can	further	tweak	the	voice	playback	by
moving	the	Speaking	Rate	slider	for	faster	or	slower	playback.	I	suggest	keeping
it	on	the	normal	default	for	now	and	modifying	it	if	necessary	once	you	have	the

whole	wireless	mic	rig	and	speaker	system	working.	Speaking	of	which,	our	next
task	is	to	get	the	wireless	mic	hooked	up	and	calibrated	for	speech	recognition.

10.4	Wireless	Mic	Calibration
If	you’re	using	a	MacBook	Pro	or	iMac	computer,	you	could	use	the	computer’s
internal	microphone.	It	works	okay	if	you	are	sitting	directly	in	front	of	the
laptop,	but	it	falters	the	farther	you	are	from	the	screen.	We	need	the	mobility	of
being	able	to	converse	with	our	home	while	walking	around,	watching	TV,
making	breakfast	in	the	kitchen,	or	cleaning	the	living	room.	This	will	be
accomplished	by	using	a	wireless	microphone.

For	a	wireless	microphone	to	reliably	work	with	the	Mac’s	speech	recognizer,	it
needs	to	be	a	decent	quality	wireless	mic	with	clear	audio	signal	transmission.	A
mic	that	delivers	crackling,	hissing	audio	won’t	work	too	well	because	the
speech	recognizer	will	struggle	to	distinguish	between	the	signal	and	the	noise.
If	this	is	a	project	you’re	planning	on	fruitfully	using	for	a	long	time,	invest	in	a
quality	wireless	microphone,	like	those	used	by	professional	singers.	These	can
cost	over	two	hundred	dollars	or	more,	depending	on	the	features	and	broadcast
range,	but	they	make	a	big	difference	in	consistent	delivery	of	clear	audio.	For
those	interested	in	testing	the	waters	before	committing	that	kind	of	money	in
audio	hardware,	the	Radio	Shack	Wireless	Lapel	Microphone	System	is	a	more
economical	compromise.

Plug	the	Griffin	iMic	adapter	into	one	of	the	Mac	computer’s	available	USB
ports,	then	plug	the	output	of	the	wireless	base	station	into	the	iMic’s	miniplug
inputs.	Make	sure	that	the	mic	input	is	selected	on	the	iMic,	turn	on	the	wireless
mic	and	power	up	the	base	station.	Select	the	iMic	USB	audio	system	in	the
Speech	Recognition	System	Preferences	pane	and	click	the	Calibrate...	button.
This	will	bring	up	the	microphone	calibration	window	(Figure	50,	Microphone
calibration).	Speak	into	the	microphone	while	moving	the	slider	left	or	right	to
keep	the	audio	level	in	the	green	bar	area.

Figure	50.	Microphone	calibration

Try	moving	around	the	room	wearing	the	active	wireless	mic	and	verify	that	the
calibration	bars	still	stay	within	the	green	while	speaking.

We	have	one	more	task	to	complete	before	we	can	start	coding.	Let’s	hook	up
the	speakers	for	audio	output.

10.5	Programming	a	Talking	Lion
Writing	good	speech	synthesis	and	recognition	software	is	hard.	That’s	why
we’re	going	to	take	advantage	of	all	the	hard	work	Apple	speech	software
engineers	have	poured	into	OS	X.	The	engine	can	be	accessed	a	variety	of	ways,
via	the	preferred	method	of	Objective-C	to	Perl,	Python,	Ruby,	and	other
scripting	language	hooks.	But	the	easiest	way	I	have	found	to	tinker	and	quickly
modify	and	test	on	the	fly	is	via	AppleScript.

I’ll	be	the	first	to	admit	that	I	am	not	a	big	fan	of	AppleScript.	Its	attempt	to	turn
script	writing	into	a	natural	English	sentence	structure	works	only	on	a
superficial	level.	It	breaks	down	pretty	quickly	for	any	intermediate	developer
fluent	in	more	elegant	scripting	languages	like	Ruby	or	Python.	Even	simple
tasks	like	string	manipulation	turn	out	to	be	a	real	pain	in	AppleScript.	That	said,
AppleScript	trumps	these	other	languages	when	it	comes	to	effortless	automation
integration	with	other	AppleScript-aware	OS	X	applications.	Bundled	programs
like	iTunes,	Mail,	Safari,	and	Finder	are	fully	scriptable,	as	are	a	number	of
third-party	OS	X	programs	like	Skype,	Microsoft	Office,	and	the	like.	In	the	case
of	this	project,	Apple’s	speech	recognition	server	is	also	highly	scriptable,	and
that’s	what	we’re	going	to	call	upon	in	this	project	to	make	the	magic	work.

While	AppleScript	can	be	written	using	any	text	editor,	it	should	come	as	no
surprise	that	it’s	best	hosted	within	the	AppleScript	Editor	application.	This	can
be	found	in	the	Applications/Utilities	folder.	Launching	the	AppleScript	editor
for	the	first	time	will	open	a	blank,	two-pane	coding	window.	The	top	half	of	the
window	is	used	to	enter	code,	while	the	bottom	consists	of	three	tabs	for
monitoring	events,	replies,	and	results	of	the	executing	script.	The	editor	aids	in
writing	script	by	color	coding	AppleScript	syntax,	but	it	doesn’t	offer	IDE-
friendlier	features	like	code	completion	or	on-the-fly	compiling.	Fortunately,
scripts	are	typically	short,	so	these	omissions	are	not	crippling.

AppleScript	has	its	own	vocabulary,	keywords,	and	idioms.	Learning
AppleScript	isn’t	difficult,	but	it	can	get	maddening	at	times	when	you	have	to
massage	the	syntax	just	right	to	make	the	script	do	what	you	intended.	For

example,	parsing	a	string	for	an	email	address	is	easy	in	most	scripting
languages.	Not	so	in	AppleScript.	Partly	due	to	its	historical	ties	and	partly	due
to	the	way	AppleScript	expects	you	to	work,	it’s	complicated.	So	with	regard	to
the	code	we	will	write	for	this	project,	you	will	just	have	to	trust	me	and	try	to
follow	along.	If	you	find	AppleScript	to	your	liking	or	want	to	see	what	else	it
can	do	to	further	extend	the	code	for	this	project,	review	Apple’s	online
documentation	for	more	information.[108]

Before	writing	the	script,	let’s	think	about	what	we	want	it	to	do.	First,	we	want
it	to	respond	to	a	select	group	of	spoken	words	or	phrases	and	act	on	those
commands	accordingly.	What	commands	should	we	elicit?	For	starters,	how
about	having	the	script	hit	the	URLs	we	exposed	in	some	of	our	networked
projects,	like	the	Web-Enabled	Light	Switch	or	the	Android	Door	Lock?	While
we’re	at	it,	let’s	make	use	of	some	of	the	bundled	OS	X	applications	like	Mail
and	iTunes	to	check	and	read	our	unread	email	and	play	music	we	want	to	hear.
Let’s	also	ask	our	house	what	time	it	is.

We	need	to	initialize	the	SpeechRecognitionServer	application	and	populate	the	set	of
words	or	phrases	that	we	want	it	to	listen	to.	Using	a	series	of	if/then	statements,
we	can	react	to	those	recognized	commands	accordingly.	For	example,	if	we	ask
the	computer	to	play	music,	we	will	call	upon	the	iTunes	application	to	take	an
inventory	of	music	tracks	in	its	library,	sort	these	by	artist	and	album,	populate
these	as	more	words/phrases	to	interpret,	and	have	the	text-to-speech	engine	ask
us	which	artist	and	album	we	want	to	listen	to.	Similarly,	we	can	have	our	unread
email	read	to	us	via	a	check	mail	command.	Doing	so	will	launch	the	Mail
application,	poll	your	preconfigured	Mail	accounts	for	new	mail,	check	the
inbox	for	unread	messages,	and	perform	a	text-to-speech	reading	of	unread
sender	names	and	message	titles.

Now	let’s	take	a	closer	look	at	the	details	of	the	script’s	execution.	Here’s	the	full
script	in	its	entirety.	Most	of	the	syntax	should	be	easy	to	follow,	even	if	you	are
not	familiar	with	AppleScript.

GivingYourHomeAVoice/osx-voice-automation.scpt
	 with	timeout	of	2629743	seconds

		set	exitApp	to	"no"

http://media.pragprog.com/titles/mrhome/code/GivingYourHomeAVoice/osx-voice-automation.scpt

	
	 		repeat	while	exitApp	is	"no"

①	 				tell	application	"SpeechRecognitionServer"	

	 						activate

	 						try

	 								set	voiceResponse	to	listen	for	{"light	on",	"light	off",	¬

	 												"unlock	door",	"play	music",	"pause	music",	¬

	 												"unpause	music",	"stop	music",	"next	track",	¬

	 												"raise	volume",	"lower	volume",	¬

	 												"previous	track",	"check	email",	"time",	"make	a	call",	¬

	 												"hang	up",	"quit	app"}	giving	up	after	2629743

	 						on	error	--	time	out

	 												return

	 						end	try

	 				end	tell

	
②	 				if	voiceResponse	is	"light	on"	then		

	 						--	open	URL	to	turn	on	Light	Switch

	 						open	location	"http://192.168.1.100:3344/command/on"

	 						say	"The	light	is	now	on."

	
	 				else	if	voiceResponse	is	"light	off"	then

	 						--	open	URL	to	turn	off	Light	Switch

	 						open	location	"http://192.168.1.100:3344/command/off"

	 						say	"The	light	is	now	off."

	
	 				else	if	voiceResponse	is	"unlock	door"	then

	 						--	open	URL	to	unlock	Android	Door	Lock

	 						open	location	"http://192.168.1.230:8000"

	 						say	"Unlocking	the	door."

	
③	 				else	if	voiceResponse	is	"play	music"	then		

	 						tell	application	"iTunes"

	 								set	musicList	to	{"Cancel"}	as	list

	 								set	myList	to	(get	artist	of	every	track	¬

	 												of	playlist	1)	as	list

	 								repeat	with	myItem	in	myList

	 										if	musicList	does	not	contain	myItem	then

	 												set	musicList	to	musicList	&	myItem

	 										end	if

	 								end	repeat

	 						end	tell

	
	 						say	"Which	artist	would	you	like	to	listen	to?"

	 						tell	application	"SpeechRecognitionServer"

	 								set	theArtistListing	to	¬

	 												(listen	for	musicList	with	prompt	musicList)

	 						end	tell

	 						if	theArtistListing	is	not	"Cancel"	then

	 								say	"Which	of	"	&	theArtistListing	&	¬

	 												"'s	albums	would	you	like	to	listen	to?"

	 								tell	application	"iTunes"

	 										tell	source	"Library"

	 												tell	library	playlist	1

	 														set	uniqueAlbumList	to	{}

	 														set	albumList	to	album	of	tracks	¬

	 																where	artist	is	equal	to	theArtistListing

	
	 																repeat	until	albumList	=	{}

	 																		if	uniqueAlbumList	does	not	contain	¬

	 																				(first	item	of	albumList)	then

	 																				copy	(first	item	of	albumList)	to	end	of	¬

	 																									uniqueAlbumList

	 																		end	if

	 																		set	albumList	to	rest	of	albumList

	 																end	repeat

	
	 																set	theUniqueAlbumList	to	{"Cancel"}	&	uniqueAlbumList

	 																tell	application	"SpeechRecognitionServer"

	 																		set	theAlbum	to	(listen	for	the	theUniqueAlbumList	¬

	 																							with	prompt	theUniqueAlbumList)

	 																end	tell

	 												end	tell

	 												if	theAlbum	is	not	"Cancel"	then

	 														if	not	((name	of	playlists)	contains	"Current	Album")	then

	 														set	theAlbumPlaylist	to	¬

	 																		make	new	playlist	with	properties	{name:"Current	Album"}

	 														else

	 																set	theAlbumPlaylist	to	playlist	"Current	Album"

	 																delete	every	track	of	theAlbumPlaylist

	 														end	if

	 														tell	library	playlist	1	to	duplicate	¬

	 																(every	track	whose	album	is	theAlbum)	to	theAlbumPlaylist

	 																play	theAlbumPlaylist

	 												else

	 														say	"Canceling	music	selection"

	 												end	if

	 										end	tell

	 								end	tell

	 						else

	 								say	"Canceling	music	selection"

	 						end	if

	
④	 				else	if	voiceResponse	is	"pause	music"	or	¬			

	 						voiceResponse	is	"unpause	music"	then

	 						tell	application	"iTunes"

	 								playpause

	 						end	tell

	
	 				else	if	voiceResponse	is	"stop	music"	then

	 						tell	application	"iTunes"

	 								stop

	 						end	tell

	
	 				else	if	voiceResponse	is	"next	track"	then

	 						tell	application	"iTunes"

	 								next	track

	 						end	tell

	
	 				else	if	voiceResponse	is	"previous	track"	then

	 						tell	application	"iTunes"

	 								previous	track

	 						end	tell

	
	 				--	Raise	and	lower	volume	routines	courtesy	of	HexMonkey's	post:

	 				--	http://forums.macrumors.com/showthread.php?t=144749

⑤	 				else	if	voiceResponse	is	"raise	volume"	then			

	 						set	currentVolume	to	output	volume	of	(get	volume	settings)

	 						set	scaledVolume	to	round	(currentVolume		(100		16))

	 						set	scaledVolume	to	scaledVolume	+	1

	 						if	(scaledVolume	>	16)	then

	 								set	scaledVolume	to	16

	 						end	if

	 						set	newVolume	to	round	(scaledVolume	/	16	*	100)

	 						set	volume	output	volume	newVolume

	 				else	if	voiceResponse	is	"lower	volume"	then

	 						set	currentVolume	to	output	volume	of	(get	volume	settings)

	 						set	scaledVolume	to	round	(currentVolume		(100		16))

	 						set	scaledVolume	to	scaledVolume	-	1

	 						if	(scaledVolume	<	0)	then

	 								set	scaledVolume	to	0

	 						end	if

	 						set	newVolume	to	round	(scaledVolume	/	16	*	100)

	 						set	volume	output	volume	newVolume

	

⑥	 				else	if	voiceResponse	is	"check	email"	then		

	 						tell	application	"Mail"

	 								activate

	 								check	for	new	mail

	 								set	unreadEmailCount	to	unread	count	in	inbox

	 								if	unreadEmailCount	is	equal	to	0	then

	 										say	"You	have	no	unread	messages	in	your	Inbox."

	 								else	if	unreadEmailCount	is	equal	to	1	then

	 										say	"You	have	1	unread	message	in	your	Inbox."

	 								else

	 										say	"You	have	"	&	unreadEmailCount	&	¬

	 														"	unread	messages	in	your	Inbox."

	 								end	if

	 								if	unreadEmailCount	is	greater	than	0	then

	 										say	"Would	you	like	me	to	read	your	unread	email	to	you?"

	 										tell	application	"SpeechRecognitionServer"

	 												activate

	 												set	voiceResponse	to	listen	for	{"yes",	"no"}	¬

	 																giving	up	after	1	*	minutes

	 										end	tell

	 										if	voiceResponse	is	"yes"	then

	 												set	allMessages	to	every	message	in	inbox

	 												repeat	with	aMessage	in	allMessages

	 														if	read	status	of	aMessage	is	false	then

	 																set	theSender	to	sender	of	aMessage

	 																set	{savedDelimiters,	AppleScript's	text	item	delimiters}	¬

	 																				to	{AppleScript's	text	item	delimiters,	"<"}

	 																set	senderName	to	first	text	item	of	theSender

	 																set	AppleScript's	text	item	delimiters	¬

	 																				to	savedDelimiters

	 																say	"From	"	&	senderName

	 																say	"Subject:	"	&	subject	of	aMessage

	 																delay	1

	 														end	if

	 												end	repeat

	 										end	if

	 								end	if

	 						end	tell

	
⑦	 				else	if	voiceResponse	is	"time"	then		

	 						set	current_time	to	(time	string	of	(current	date))

	 						set	{savedDelimiters,	AppleScript's	text	item	delimiters}	to	¬

	 										{AppleScript's	text	item	delimiters,	":"}

	 						set	hours	to	first	text	item	of	current_time

	 						set	minutes	to	the	second	text	item	of	current_time

①

	 						set	AMPM	to	third	text	item	of	current_time

	 						set	AMPM	to	text	3	thru	5	of	AMPM

	 						set	AppleScript's	text	item	delimiters	to	savedDelimiters

	 						say	"The	time	is	"	&	hours	&	"	"	&	minutes	&	AMPM

⑧	 						--else	if	voiceResponse	is	"make	a	call"	then				

	 						--		tell	application	"Skype"

	 						--	--	A	Skype	API	Security	dialog	will	pop	up	first

	 						--	--	time	accessing	Skype	with	this	script.

	 						--	--	Select	"Allow	this	application	to	use	Skype"	for	¬

	 						--	--	uninterrupted	Skype	API	access.

	 						--				activate

	 						--			--	replace	echo123	Skype	Call	Testing	Service	ID	with	¬

	 						--			--	phone	number	or	your	contact's	Skype	ID

	 						--						send	command	"CALL	echo123"	script	name	¬

	 						--						"Place	Skype	Call"

	 						--				end	tell

	 						--		else	if	voiceResponse	is	"hang	up"	then

	 						--				tell	application	"Skype"

	 						--						quit

	 						--		end	tell

⑨	 				else	if	voiceResponse	is	"quit	app"	then			

	 						set	exitApp	to	"yes"

	 						say	"Listening	deactivated.	Exiting	application."

	 						delay	1

	 						do	shell	script	"killall	SpeechRecognitionServer"

	 				end	if

	 		end	repeat

	 end	timeout

The	first	thing	we	should	do	to	keep	the	script	running	continuously	is	wrap
the	script	in	two	loops.	The	first	is	a	with	timeout...	end	with	loop	to	prevent	the
script	from	timing	out.	The	timeout	duration	must	be	set	in	seconds.	In	this
case,	we’re	going	to	run	the	script	for	one	month	(there	are	roughly	2.6
million	seconds	in	an	average	month).

The	second	loop	is	a	while	loop	that	repeats	until	the	exitApp	variable	is	set	to
yes	via	the	“Quit	app”	voiceResponse,	as	shown	toward	the	end	of	the	code
listing.

Next,	initialize	the	Speech	Recognizer	Server	and	pass	it	an	array	of	the	key
words	and	phrases	via	the	listen	for	method.	We	will	keep	the	recognizer	alive

②

③

④

for	a	month	so	it	can	await	incoming	commands	without	having	to	restart	the
script	when	the	listening	duration	times	out.	You	can	extend	this	month-long
duration	by	changing	the	giving	up	value.

If	the	incoming	phrase	is	interpreted	as	lights	on,	we	will	open	the	default
browser	and	direct	it	to	the	on	URL	of	our	web-enabled	light	switch.	“Lights
off”	will	request	the	off	URL	from	that	project.	We	can	also	perform	the
same	open	location	URL	call	for	the	Android	door	lock	project	too.

Besides	triggering	URL	calls	via	voice,	we	can	also	interact	with
AppleScript-able	OS	X	applications	like	iTunes	and	Mail.	In	this	code
snippet,	we	do	the	following:

1.	 Open	iTunes.

2.	 Create	an	empty	list	array.

3.	 Populate	that	array	with	every	song	track	in	our	local	iTunes	library,
eliminating	duplicate	titles	along	the	way.

4.	 Extract	the	artist	names	from	the	array	of	tracks.

5.	 As	long	as	there	is	at	least	one	artist	in	the	array,	pass	the	array	of	artist
names	to	the	speech	recognition	server	via	its	listen	for	method.

6.	 Ask	the	user	to	pick	an	artist	to	listen	to.	If	the	user	responds	with	the
name	of	an	artist	in	the	library,	populate	the	speech	recognizer	with	the
name(s)	of	that	artist’s	album(s).	Users	can	also	exit	the	play	music

routine	at	this	point	by	saying	the	word	“Cancel.”

7.	 If	an	artist	has	more	than	one	album	in	the	library,	use	the	same	type	of
procedure	as	the	artist	selection	process	to	select	the	desired	artist’s
album.	Otherwise,	start	playback	of	the	album	immediately.

The	pause/unpause	and	stop	music	commands,	along	with	the	next	and
previous	track	commands,	call	iTunes’s	similarly	named	methods.

⑤

⑥

⑦

⑧

The	raise	and	lower	volume	commands	capture	the	Mac’s	current	output
volume	and	raises	or	lowers	it	equivalent	to	a	single	press	of	the	up	and
down	volume	keys	on	the	Mac’s	keyboard.	These	commands	are	especially
helpful	when	having	to	raise	or	lower	music	playback	volume	hands-free.

This	portion	of	the	script	expects	that	you	have	already	configured	your
desired	email	accounts	to	work	with	OS	X’s	built-in	Mail	application.	In	the
Mail	snippet,	we	do	this:

1.	 Open	Mail.

2.	 Poll	all	configured	mail	servers	for	new,	unread	email	messages.

3.	 Count	the	number	of	unread	mail	messages	in	the	unified	inbox	and
speak	that	amount.

4.	 If	there	are	any	unread	messages,	ask	users	if	they	would	like	to	have
their	unread	messages	read	to	them.

5.	 If	the	user	answer	is	yes,	create	an	array	of	the	unread	messages	and
read	the	name	and	the	subject	line	of	the	email.	Otherwise,	exit	the
routine.

This	routine	extracts	the	current	time	from	AppleScript’s	current	date	routine.
From	there,	we	do	this:

1.	 Assign	the	current	time	to	the	string	current_time.

2.	 Use	AppleScript’s	savedDelimiters	function	to	split	the	current_time	string
via	the	:	delimiter.	This	breaks	the	string	apart	into	its	constituent	hour
and	minute	values.	The	remainder	of	the	string	contains	the	a.m.	or	p.m.
designation.

3.	 Assign	these	time	values	to	their	appropriate	variables	(hours,	minutes,
AMPM)	and	speak	them	accordingly.

⑨

Uncomment	these	lines	(remove	the	double-dash	[--]	characters	used	to
indicate	a	comment	in	AppleScript)	if	you	have	the	Mac	Skype	client
installed	and	you	want	to	place	a	hands-free	call.	Configure	the	account
name	of	your	choice	in	the	echo123	Skype	call	testing	service	account.

This	command	exits	the	script	and	ensures	that	the	speech	recognition	server
process	is	indeed	killed	by	issuing	a	killall	SpeechRecognitionServer	command
from	the	shell.

Once	you	have	entered	the	script	in	the	AppleScript	editor,	save	it	and	click	the
Compile	button	on	the	editor’s	toolbar.	If	the	script	contains	any	typos	or	errors,
it	will	fail	to	compile.	Clean	up	whatever	problems	occur	and	make	sure	you
attain	a	clean	compile.	Also	make	sure	that	your	calibrated	wireless	headset	is
turned	on	and	the	input	audio	levels	are	properly	set.	Turn	up	the	volume	on
your	external	speakers	loud	enough	to	hear	the	responses	and	music	playback.
Then	click	the	Run	button	and	get	ready	to	talk.

10.6	Conversing	with	Your	Home
The	culminating	moment	of	glory	has	arrived.	Speak	the	command	“Time,”	and
listen	for	your	computer	to	respond	with	the	current	time.	Ask	it	to	“play	music,”
and	your	computer	should	respond	with	“Which	artist	would	you	like	to	listen
to?”	Respond	in	kind	with	an	artist	in	the	computer’s	iTunes	library	and	select
the	album	from	which	to	start	playing.	Say	“Stop	music”	when	you’re	done
listening	to	the	music.

Query	for	unread	email	in	your	inbox	by	asking	your	computer	to	“check	mail.”
Check	the	computer	screen	to	verify	that	the	computer	responds	with	the	correct
count	and	reads	the	correct	email	sender	and	subject	lines.

If	you	have	your	Android	door	lock	or	web-enabled	light	switch	running,	say
“Unlock	door”	or	“Light	on”	to	watch	your	door	unlock	or	light	turn	on
accordingly.	You	now	have	your	own	voice-activated	home.	Pretty	cool!

Try	issuing	commands	from	different	locations.	Move	around	the	room,	then	try
from	other	rooms.	See	how	far	your	wireless	microphone’s	signal	will	reach
before	it	starts	to	cut	out	and	your	commands	are	no	longer	being	acknowledged.
Keep	these	boundaries	in	mind	when	interacting	with	your	computer.

To	give	the	script	more	permanence,	convert	it	to	an	executable.	Place	its	icon	in
the	OS	X	desktop	dock	and	control-click	its	icon	to	select	Open	at	Login	from
the	Options	section	of	the	pop-up	menu.	This	will	automatically	launch	the	script
each	time	you	log	into	your	Mac’s	desktop,	ready	to	listen	to	your	predetermined
voice	commands.

Continue	to	tweak	the	script	and	add	any	new	phrases	and	functionality	that	best
suit	your	environment.	Network-enable	the	Curtain	Automation	project	and
instruct	your	home	to	“open	drapes”	or	add	a	weather	option	that	pulls	down	the
weather	forecast	from	the	National	Oceanic	and	Atmospheric	Administration’s
weather.gov	website	and	reads	it	aloud.	Consider	adding	more	features	as
suggested	in	the	Next	Steps	section.

10.7	Next	Steps
Kudos	to	you	for	completing	the	last	project	in	the	book.	As	you	have	seen,
enabling	voice	recognition	is	a	remarkably	trivial	matter	and	while	the
technology	isn’t	perfect,	it’s	still	pretty	wild	that	we	have	the	ability	to	control
our	home	in	ways	that	were	considered	science	fiction	twenty	years	ago.

Take	this	higher-level	automation	skill	further	by	pursuing	the	following
enhancements:

Expand	the	spoken	email	routine	to	include	saying	the	timestamp	and
message	body.	Add	the	ability	to	delete	a	message	or	reply	to	an	email	with
prepared	templates	(ex:	“Reply	yes”).

Duplicate	the	script’s	iTunes	artist/album	lookup	array	functionality	for	the
Skype	client	so	that	you	can	place	hands-free	calling	to	anyone	on	your
Skype	contact	list.	After	saying	“Make	a	call,”	the	script	will	populate	a
listen	for	array	with	the	contact	names	in	your	active	Skype	account.	Like	the
artist	name	response,	reply	with	the	name	of	the	contact	you	want	to	call
and	the	script	will	automate	Skype	to	do	so.

Add	Text	to	Speech	extensions	to	the	Tweeting	Bird	Feeder	and	Package
Delivery	Detector	Python	scripts	that	speak	status	updates	when	events	like
bird	landings	or	package	deliveries	are	detected.	This	can	be	done	via	an
Open	Script	Architecture	(OSA)	shell	command.[109]

Bring	speech	recognition	to	other	computing	platforms	besides	Apple	OS	X
by	converting	the	script	to	an	Android	application	by	calling	upon
Android’s	RecognizerIntent	intent	or	Microsoft’s	Speech	API	for	the	Windows
platform.[110]

Footnotes

[105] http://www.supertooth.net/AU/produitmusique.htm

http://www.supertooth.net/AU/produitmusique.htm

[106] http://www.radioshack.com/product/index.jsp?productId=2131022

[107] http://store.griffintechnology.com/imic

[108] http://developer.apple.com/library/mac/#documentation/AppleScript/Conceptual/AppleScriptLangGuide/introduction/ASLR_intro.html

[109] http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man1/osascript.1.html

[110]
http://developer.android.com/resources/articles/speech-input.html	or	http://msdn.microsoft.com/en-
us/library/ee125663%28VS.85%29.aspx,	respectively.

Copyright	©	2012,	The	Pragmatic	Bookshelf.

http://www.radioshack.com/product/index.jsp?productId=2131022
http://store.griffintechnology.com/imic
http://developer.apple.com/library/mac/#documentation/AppleScript/Conceptual/AppleScriptLangGuide/introduction/ASLR_intro.html
http://developer.apple.com/library/mac/#documentation/Darwin/Reference/ManPages/man1/osascript.1.html
http://developer.android.com/resources/articles/speech-input.html
http://msdn.microsoft.com/en-us/library/ee125663%28VS.85%29.aspx

Part	3	
Predictions

Chapter

11	

Future	Designs

The	majority	of	this	book	has	focused	on	real	home	automation	projects	that	you
can	build	inexpensively	today.	This	chapter	takes	a	look	at	the	exciting,	rapid
evolution	of	microcontrollers,	smartphones,	and	computers	and	then	forecasts
what’s	on	the	horizon	for	these	technologies.

We	will	take	a	look	at	the	near-term	prospects	of	Arduinos,	Androids,	and
computer	operating	systems	and	then	extrapolate	these	developments	out
roughly	a	decade	to	see	how	these	products	will	help	form	the	foundation	of
high-tech	residential	living	in	the	year	2025.	Looking	back	at	how	sophisticated
mobile	technology	has	become	over	the	last	ten	years,	the	ideas	in	this	future
setting	may	not	be	as	farfetched	as	they	sound.	In	fact,	most	of	the	proposed
scenarios	could	be	implemented	today,	with	the	projects	you	learned	about	in
this	book	helping	to	point	the	way.	But	first,	let’s	take	a	look	at	what’s	coming
up	in	the	next	year	or	so.

11.1	Living	in	the	Near
The	open	hardware	movement	is	rapidly	gaining	momentum,	and	more
businesses	and	services	are	expanding	or	being	created	as	a	result.	The
established	technologies	like	Arduino	and	Android	are	not	standing	still	either.
Both	of	these	platforms	had	major	version	upgrades	just	as	this	book	was
finishing	its	production.

This	section	talks	about	what	changes	are	in	store	with	these	near-term
technology	innovations	and	how	these	new	releases	will	impact	anyone	choosing
to	use	these	as	the	technologies	of	choice	when	constructing	the	projects	in	this
book.

Arduino	1.0
Just	as	the	final	pages	in	this	book	were	written,	the	Arduino	team	announced
the	impending	release	of	Arduino	version	1.0.	A	number	of	substantial	changes
have	been	made	in	this	version	that	will	certainly	create	legacy	code	nightmares.
This	was	a	bold	move	by	the	Arduino	team	given	the	considerable	amount	of
user-generated	libraries,	code	samples,	documentation,	books,	and	videos	made
using	earlier	Arduino	releases.	As	a	consequence,	this	book	is	no	different.	Once
Arduino	1.0	is	widely	adopted,	the	project	and	library	dependencies	will	almost
certainly	need	to	be	rewritten	to	support	the	changes.	Most	notable	of	these
changes	include	the	following:

Sketch	file	name	extensions	have	been	changed	from	.pde	to	.ino.	This	was
done	to	avoid	confusion	with	Processing	sketches	that	also	use	the	same
.pde	extension.

The	Arduino	Ethernet	library	will	natively	support	DNS	and	DHCP.	This
will	make	IP	address	assignments	vastly	easier.

The	String	class	has	been	optimized	so	that	it	requires	fewer	onboard
resources	and	can	do	more	with	less.

The	Serial	class	contains	more	parsing	functions	to	search	for	data	and	to
quickly	read	multiple	bytes	into	a	buffer.	This	may	also	create	timing	issues
when	using	legacy	code	since	such	asynchronous	operations	were	not
available	or	accounted	for	in	most	sketches	preceding	the	Arduino	1.0
release.

Other	bundled	libraries	like	those	for	using	the	SD	card	reader	have	also
been	upgraded	to	make	it	easier	to	write	sophisticated	sketches	without
having	to	worry	so	much	about	the	underlying	code	such	sketches	rely
upon.

Cosmetic	changes	have	been	made	to	the	IDE.	New	icons,	color	schemes,
and	indicators	like	compilation	progress	bars	have	been	added	to	modernize
the	IDE	and	make	it	easier	to	locate	and	interact	with	the	user	interface
elements.

Several	other	key	library	class	and	function	names	(such	as	the	Wired
library)	have	changed	along	with	their	return	types	and	implementations.
Library	authors	will	be	busy	in	the	months	ahead	as	they	port	their
contributions	to	support	these	lower-level	modifications.

For	more	details	about	these	changes,	read	the	entry	on	this	topic	posted	on	the
Arduino	blog.[111]	Fortunately,	the	Arduino	IDE	is	self-contained	and	portable
enough	to	install	several	different	versions	on	your	computer.	You	will	be	able	to
continue	to	use	the	previous	releases	of	the	IDE	when	sketch	dependencies	have
not	yet	been	upgraded	to	support	the	latest	improvements.	As	the	new	version
becomes	more	widely	adopted	over	the	next	year	or	so,	more	of	the	popular	user
libraries	will	be	converted	and	supported.	As	such,	future	editions	of	this	book
intend	to	provide	code	compatible	with	the	new	and	the	old	IDE	releases.

Android@Home
At	the	2011	Google	IO	conference,	the	Android	Open	Accessory	API	and
Development	Kit	(ADK)	was	officially	unveiled.	The	intent	of	this	initiative	was
to	provide	Android	API-level	access	to	low-cost	microcontrollers,	sensors,	and
actuators.	Conference	attendees	were	given	custom	versions	of	the	Arduino

Mega	board	populated	with	basic	sensors	that	could	be	polled	from	an	Android
device	like	the	Google	Nexus	phone.[112]	Several	configuration	scenarios	were
posited	at	the	conference	using	this	technology	combination,	one	of	which	was
dubbed	Android@Home.	Examples	that	controlled	wireless	lighting,
entertainment	systems,	and	exercise	equipment	were	demonstrated,	and	more
third-party	solutions	are	expected	to	be	announced	at	Google	IO	2012.

The	ADK	is	really	what	drives	Google@Home,	and	at	its	heart	it	is	a	hardware
specification	that	attempts	to	standardize	communication	across	devices.	The
Android	OS	can	then	react	to	these	messages	accordingly.	The	expectation	is	that
as	hardware	becomes	more	commoditized,	the	Android	OS	will	be	embedded
into	more	devices	beyond	just	phones.	Google	hopes	that	this	will	revolutionize
the	home	automation	market	by	having	enough	electronic	appliance
manufacturers	adopt	the	specification	and	allow	these	devices	to	talk	to	one
another.

Unfortunately,	having	seen	this	scenario	play	out	with	other	home	automation
standardization	attempts,	I	don’t	think	there	has	been	enough	momentum	behind
the	Google@Home	initiative	outside	of	Google	that	shows	much	interest…yet.
Many	are	taking	a	wait-and-see	approach	before	investing	much	attention.	But
even	if	Android@Home	doesn’t	have	white-hot	adoption,	its	impact	on	the	home
automation	space	will	no	doubt	spur	Google’s	competitors,	namely	Apple	and
Microsoft,	to	take	a	closer	look	at	this	market	opportunity.	The	most	likely	initial
point	of	entry	for	these	companies	will	be	the	television.

The	Apple	Home	Button
With	the	introduction	of	Apple’s	Siri	in	the	iPhone	4S,	Apple	has	constructed	a
meta-interface	on	top	of	information	searching,	one	that	does	not	rely	entirely	on
a	web	browser	to	view	query	results.	For	search	providers	like	Google	and
Microsoft,	this	is	a	game	changer,	since	those	company’s	revenue	models	are
derived	by	interleaving	relevant	advertising	with	search	results.	In	certain
scenarios,	Siri’s	vocal	output	filters	these	text-based	results	to	form	a
conversation	with	the	user	rather	than	a	database	dump,	obviating	the	need	for	a
slurry	of	ads	to	be	displayed.	While	it’s	technically	possible	that	Apple	may

someday	incorporate	advertising	in	Siri’s	conversation,	the	near-term	Siri
experience	is	expected	to	be	ad	free.	If	you	had	the	choice	between	typing	in	a
query	and	receiving	a	blob	of	links	and	ads	in	return	versus	asking	your	TV	for
information	and	having	it	respond	with	a	clear,	direct	answer,	which	technology
would	you	use?

Apple,	like	Google	and	Microsoft,	also	designed	a	computer	that	connects	to	a
television	and	allows	streaming	music	and	video	content	to	be	played	back	on
the	TV.	Hopeful	rumors	abound	that	Apple	will	release	a	next	generation	version
of	their	Apple	TV	device	that	could	incorporate	Siri	technology	for	voice	remote
control.	It	isn’t	hard	to	imagine	asking	your	TV	to	display	the	local	weather
forecast,	play	album	tracks	by	your	favorite	artists,	perform	speech-to-text
dictation	email	responses	and,	yes,	even	reach	out	to	other	devices	in	the	home
(predominantly	iPhones	and	iPads)	that	synchronize	via	iCloud	and	participate	in
the	conversation.	Google	and	Microsoft	won’t	be	sitting	still	either,	and	it’s
possible	that	their	voice	recognition	and	huge	data	sets	of	aggregated
information	will	beat	Apple	to	the	spoken	command	automation	party.

It	should	also	come	as	no	surprise	if	engineers	at	Apple	have	been	looking	for
ways	to	more	tightly	couple	their	platform	into	the	home.	With	Google’s
Android@Home	intentions	and	Microsoft’s	Kinect	experiments,	Apple’s	home
consumer	cards	have	yet	to	be	shown.	But	when	they	are,	Apple’s	approach	will
undoubtedly	receive	significant	attention	and	developer	support.

11.2	The	Long	View
While	all	of	this	automation	designed	around	making	our	home	lives	easier	is
truly	awesome,	the	one	key	dependency	to	making	it	all	work	is	electricity.	But
you	can	imagine	the	demands	placed	on	our	planet’s	resources	if	everyone	had
the	luxury	of	fully	automated	homes.	Hopefully	the	next	generation	of
entrepreneurs	will	do	for	energy	collection	and	distribution	what	my	generation
did	for	computers	and	global	communications.	Smart	grids,	sustainable	energy
sources,	and	respect	for	the	environment	will	be	just	as	important	as	the
inexpensive	sensors,	standard	protocols,	and	ubiquitous	secure	wireless
communication	that	automation	products	of	the	future	will	need	to	support.

Assuming	the	energy	problem	is	accounted	for,	the	likelihood	of	low-power
sensors	and	hardware	messaging	systems	will	mushroom.	How	many	computers,
monitors,	clocks,	radios,	phones,	tablets,	and	entertainment	consoles	do	you
have	plugged	into	your	home’s	power	outlets?	Forty	years	ago,	besides	lighting
and	refrigeration,	there	might	have	been	one	or	two	TVs,	an	LP	turntable,	a	few
radios,	and	maybe	an	electric	clock.	Forty	years	from	now,	it’s	possible	that	there
will	be	half	a	dozen	electronic	devices	networked	in	every	room	and	in	constant
chatter	with	their	peers.	Centralized	services	will	monitor	messages	for	events
and	reacting	accordingly.	So	what	will	this	look	like?

The	Home	Is	the	Computer
Imagine	taking	the	projects	in	this	book	and	expanding	them	in	various	ways	for
every	room	in	your	home.	Automation	is	everywhere	and	the	air	is	busy	with
messages	being	sent	to	your	server	for	processing.	Perhaps	this	server	is	a	virtual
private	server	in	the	cloud,	or	maybe	the	message	bus	is	being	managed	by	a
third-party	provider.	Your	home	will	be	able	to	immediately	inform	you	of	any
alerts	and	will	also	be	able	to	sense	your	presence	and	react	accordingly.	Image
and	voice	recognition	systems	will	know	who	you	are	and	orient	the	home’s
services	to	your	preferences.	You	will	live	in	a	sensor-filled	environment	and	it
will	be	just	as	natural	and	effortless	as	tweeting	from	your	phone	is	today.	The
data	collected	will	be	analyzed	and	refined	to	fit	your	lifestyle.	Your	home	will

be	capable	of	predicting	your	lifestyle	activities	based	on	external	factors	like	the
season	and	time	of	day,	local	weather,	package	deliveries,	type	of	visitors,
duration	of	presence,	preferred	mode	and	style	of	digital	entertainment,	and	the
frequency	and	filtering	of	alerts.

The	Embedded	Mattress
Electronic	components	are	getting	less	expensive	by	the	day.	Considering	how
much	computing	power	there	is	in	a	thirty-dollar	Arduino	board	compared	to	the
cost	of	the	same	level	of	computing	ten	years	ago,	it’s	not	too	difficult	to
imagine	how	even	more	computing	capacity	will	be	available	for	even	less
expense	in	the	future.	Combine	these	microcontrollers	with	inexpensive
embedded	sensors,	and	the	home	will	be	abuzz	with	information	interaction.
When	you	leave	for	the	day,	your	home	will	power	down	to	sleep	mode,
ensuring	that	gas	and	electricity	consumption	are	kept	to	an	operating	minimum.
When	you	nod	off	to	sleep,	pressure	sensors	in	your	bed	will	know	if	you	had	a
restful	or	restless	night	and	accommodate	the	alarm	in	the	morning.	Each	door
could	be	wired	so	your	house	will	know	your	traversal	patterns	and	preemptively
turn	on	lights	and	appliances	accordingly.

For	example,	the	house	will	know	you	wake	up	for	work	every	morning	at	six
o’clock,	take	a	shower,	and	head	to	the	kitchen	for	a	cup	of	coffee	thirty	minutes
later.	After	triggering	your	alarm	clock,	the	shower	will	turn	on	and	the	water
will	be	warm	just	as	you	enter.	While	you’re	getting	dressed,	coffee	will	be
freshly	brewing	and	ready	by	the	time	you	reach	the	kitchen.	The	house	will	also
know	that	you	sleep	in	until	eight	o’clock	on	Saturdays	and	don’t	follow	the
same	routine,	so	it	will	toggle	to	manual	mode	for	the	daily	waking	ritual.	Not
surprisingly,	this	scenario	can	be	programmed	and	implemented	today	with	the
tools	and	technologies	we	used	in	the	book’s	projects.	But	when	the	electronics
get	cheap	enough,	the	cloud	gets	robust	enough,	and	the	interfaces	are
standardized	enough,	a	greater	number	of	people	will	come	to	expect	this	type	of
scenario.

11.3	The	Home	of	the	Future
Like	any	passionate	technologist,	I	enjoy	imagining	futuristic	visions	of
plausible	technology	scenarios.	Yet	the	pragmatic	developer	in	me	knows	such
visions	don’t	happen	overnight.	They	require	incremental	steps	in	a	number	of
related	areas.	But	at	some	point,	all	those	incremental	services,	discoveries,	and
technologies	converge	and	create	inflection	points	that	forever	alter	the	course	of
history.

I	have	been	fortunate	to	participate	in	three	major	technology	revolutions	in	my
lifetime.	The	first	was	the	introduction	and	rapid	evolution	of	the	personal
computer	in	the	1980s.	The	second	was	the	supernova	expansion	of	the	Internet
in	the	1990s,	and	the	third	was	the	mobile	device	revolution	in	the	first	decade	of
the	twenty-first	century.

Technologies	are	converging.	Cloud	computing,	palm-sized	Internet-connected
supercomputers,	inexpensive	network-aware	embedded	sensors,	autonomous
controls,	cheap	storage,	and	faster	compute	cycles	will	lead	us	to	another
amazing	era	of	information	processing.	With	all	these	technology	forces	and
developments	meshing	together,	here	is	my	prediction	of	a	typical	domestic	day
for	a	technically	savvy	homeowner	(Figure	51,	A	Smarter	Home,	circa	2025).

Figure	51.	A	Smarter	Home,	circa	2025

After	coming	home	from	a	long	day	at	work,	Mel’s	phone	activates	the	keyless
doorway	lock	that	automatically	logs	the	event	and	video	capture	to	her	secure
cloud	bank.	Based	on	GPS	coordinates,	Mel’s	phone	had	already	called	ahead
when	she	was	twenty	minutes	away	to	tell	the	HVAC	system	to	turn	on	the	air
conditioning.	By	the	time	of	her	arrival,	the	home	was	as	cool	as	when	she	left	in
the	morning.

A	parcel	is	waiting	for	her	on	the	steps;	it’s	a	box	of	paper	towels	that	was
automatically	reordered	when	the	towel	dispenser	detected	it	was	running	low.
With	the	delivery	confirmation	message,	the	dispenser’s	counter	was
automatically	reset	and	won’t	need	to	reorder	again	for	a	while.

She’s	carrying	a	bag	of	groceries	that	her	refrigerator	suggested	that	she	bring
home.	The	sensors	in	the	fridge	detected	that	the	tomatoes	had	only	another	day
before	they	would	start	to	turn,	so	Mel	decided	to	pick	up	some	additional
ingredients	for	making	spaghetti	sauce.

As	she	prepares	the	meal	by	filling	up	a	pot	of	water	to	boil	for	the	spaghetti,	the
faucet	sensors	ensure	that	the	purity	of	the	water	is	contaminant-free.	If	an
anomaly	is	detected,	a	message	is	sent	to	the	city’s	water	reclamation	department
automatically	reporting	the	issue.

After	dinner,	Mel	decides	to	exercise	with	a	ride	on	her	stationary	biking
simulator.	She	usually	meets	a	friend	on	the	prairie	road	course	around	this	time
of	day,	so	she	dons	her	motion-tracking	3D	headset,	queues	up	her	favorite
playlist	and	starts	peddling.	The	headset	has	a	heart	rate,	blood	pressure,	and
perspiration	monitor	built	into	the	strap,	and	these	values	are	translucently
overlaid	on	top	of	the	pastoral	scene	of	rolling	hills	of	swaying	wheat.	After	a
few	minutes,	her	friend’s	avatar	rides	close	by	and	pings	her,	asking	if	Mel	is
available	for	conversation.	Mel	acknowledges	and	the	two	keep	each	other
company	as	they	log	half	an	hour	on	their	bikes.	At	the	end	of	the	ride,	each	are
credited	with	200	energy	points	as	a	result	of	their	peddling	power	feeding
electricity	back	into	the	grid.

With	twilight	approaching,	photosensors	lining	the	window	panes	prepare	the
home’s	lighting	for	the	evening	by	drawing	the	curtains	and	activating	motion
detectors	in	the	rooms.	Gone	are	the	days	of	flipping	on	and	off	light	switches,
unintentionally	leaving	lights	on	throughout	the	home	even	when	no	one	is	in	the
room.	There	is	an	override	option	when	guests	are	visiting,	but	most	of	the	time
the	motion	detectors	do	their	job	well	by	turning	on	and	off	the	lights	based	on
presence.	This	effective	lighting	strategy	has	contributed	to	even	more	monthly
energy	credits	as	a	result.

As	she	begins	to	settle	in	for	the	evening,	Mel	asks	her	television	to	list	new
videos	that	her	friends	have	suggested.	Voice	control	has	become	the	norm	with
content	consumption	devices	and	has	steadily	improved	with	filtering	algorithms
and	speaker	identification.	While	the	videos	play	back	sequentially,	overlays	of
her	online	status,	message	queues,	weather	forecast,	and	upcoming	schedules
can	be	called	upon	just	by	asking	the	television	for	that	information.	The	weather
dictates	what	her	outfit	will	be	the	next	day.	A	warm	front	is	moving	in,	so	Mel’s
closet	rack	automatically	queues	up	via	RFID	sensors	embedded	in	the	clothing
hangers	a	section	of	appropriate	outfits	to	choose	from.	It’s	going	to	be	a	bright,
sunny	day.

I	hope	you	enjoyed	that	projection	of	the	future.	For	those	who	prefer	to	invent
the	future	instead	of	waiting	around	for	it	to	arrive,	the	technologies	to	build
such	a	scenario	exist	today.	With	the	right	mix	of	cost-effective	technology,	easy
implementation,	and	effective	sales,	marketing,	and	timing,	someone	is	going	to
bring	elements	of	this	future	scenario	to	life	and	forever	change	the	way	people
interact	with	their	homes.	That	person	could	be	you!

Footnotes

[111] http://arduino.cc/blog/2011/10/04/arduino-1-0/

[112] http://www.adafruit.com/products/191

Copyright	©	2012,	The	Pragmatic	Bookshelf.

http://arduino.cc/blog/2011/10/04/arduino-1-0/
http://www.adafruit.com/products/191

Chapter

12	

More	Project	Ideas

Now	that	you	have	a	solid	footing	on	which	to	climb,	you	can	take	your	home
automation	design	and	construction	experience	to	new	heights	by	building	your
own	projects.	This	brief	concluding	chapter	offers	a	quick	survey	of	other	ideas
to	consider	using	equipment	you	have	already	worked	with.

If	you	assembled	all	the	projects	in	this	book,	you	already	have	most	of	the
hardware	required	to	build	the	ideas	presented	in	this	chapter.	You	can	also	take
the	code	from	these	projects	and	have	these	new	project	suggestions	up	and
running	with	just	a	few	tweaks.	Let’s	take	a	look	at	some	more	ways	you	can
program	your	home.

12.1	Clutter	Detector
Do	you	have	a	spouse,	kids,	or	a	partner	who	just	can’t	seem	to	keep	an	area	free
of	clutter	and	debris	no	matter	how	often	you	think	it	gets	cleaned	up?	Somehow
that	empty	spot	attracts	newspapers,	junk	mail,	empty	boxes,	crumpled	clothing,
packing	material,	and	whatever	else	happens	to	be	pseudomagnetized	to	that
spot?	If	so,	enlist	the	help	of	your	newfound	electronics	experience	by
constructing	a	detector	using	an	infrared	distance	sensor.[113]

Point	the	sensor	at	the	empty	space	and	measure	the	“clean	area”	reading.	As
clutter	piles	up,	the	distance	detected	by	the	sensor	will	be	reduced.	Have	this
trigger	an	email	to	your	clutter-collecting	cohabitants	that	they	need	to	remove
their	clutter	collection	from	the	detection	area.	Be	as	aggressive	as	you	want	to
on	email	notification	frequency.	And	when	the	clutter	has	been	removed,	you
can	even	send	an	email	message	from	your	home	thanking	the	offender(s)	for
cleaning	up	the	mess.

12.2	Electricity	Usage	Monitor
Using	the	same	concept	behind	Adafruit’s	Tweet-A-Watt,[114]	hook	into	a	Kill-
A-Watt	electricity	flow	detector	to	measure	the	energy	usage	of	an	electrical
appliance	such	as	a	refrigerator	or	television.

Some	electrical	utility	companies	offer	their	customers	energy	tracking	by
month.	Access	this	on	the	Web	and	calculate	the	percentage	of	total	electricity
that	monitored	appliance	consumes	on	a	monthly	basis.	Then,	based	on	your
electricity	bill	for	that	month,	calculate	the	monthly,	daily,	and	hourly	cost
associated	with	operating	that	appliance.	You	may	be	surprised	just	how	much
money	you’re	spending	on	watching	a	couple	hours	of	TV	or	how	much	that
freezer	that	you	bought	on	sale	really	ends	up	costing	over	its	lifetime.

12.3	Electric	Scarecrow
Have	critter	problems	been	plaguing	your	vegetable	garden?	Shoo	those
problems	away	using	a	smarter	approach.	Go	beyond	the	picturesque	but
functionally	pointless	static	scarecrow	by	bringing	it	to	life	with	the	help	of	a
motion	detector	and	a	couple	of	heavy-duty	servos.	When	that	pesky	rabbit
comes	by	for	its	evening	grazing	on	your	plants,	the	scarecrow’s	sensor	will
bring	it	to	life,	moving	its	arms	and	legs	in	a	convincing	way	to	frighten	the
rabbit	away.	Have	your	scarecrow	email	a	photo	of	its	animal	detection	activities
with	the	help	of	an	Android	camera	phone	seated	inside	the	scarecrow’s	head.

12.4	Entertainment	System	Remote
Extend	the	Rails	server	from	the	Chapter	7,	WebEnabled	Light	Switch	project	to
transmit	IR	commands	through	a	serial	port	connected	to	an	Arduino	that	is
attached	to	an	IR	LED.[115]	Build	the	Arduino-assisted	IR	transmitter	using
Maik	Schmidt’s	instructions	in	Arduino:	A	Quick	Start	Guide	[Sch11].	Place	IR
LEDs	in	front	of	all	your	IR-controlled	entertainment	center	devices,	such	as
televisions	and	audio	receivers.	Create	a	friendly	user	interface	for	your	native
iOS	or	Android	client,	or	combine	the	IR	user	interface	with	other	project	client
interfaces,	such	as	the	one	we	made	for	the	Chapter	9,	Android	Door	Lock.

12.5	Home	Sleep	Timer
Have	any	family	members	who	fall	asleep	while	watching	TV?	Forgot	to	power
down	that	power-hungry	quad-core	desktop	computer	in	the	study?	Did	someone
forget	to	turn	off	the	lights	in	the	basement?	If	so,	write	a	script	that	turns	off
lights,	appliances,	and	computers	at	a	time	when	everyone	should	be	sleeping.	If
the	computer	supports	Wake-On-LAN	(WOL),	send	it	a	shutdown	packet	from
your	script.	Turn	off	lights	via	X10	heyu	commands.	Turn	off	TVs	and	stereos	via
the	entertainment	system	remote.	Turn	off	anything	else	plugged	into	a
PowerSwitch	Tail.	Pocket	some	money,	reduce	your	carbon	footprint,	and	save
the	planet	while	you	sleep.

12.6	Humidity	Sensor-Driven	Sprinkler	System
Hook	up	a	DHT22	temperature	and	humidity	sensor	to	an	Arduino	attached	to	a
stepper	motor	that	drives	a	water	spigot	attached	to	a	garden	hose	connected	to	a
lawn	sprinkler.[116]	When	the	temperature	is	high	and	the	humidity	is	low	for	a
prolonged	duration,	turn	on	the	stepper	motor	crank	valve	on	the	water	spigot.
Let	the	water	run	for	ten	minutes	and	then	shut	off	the	water	valve.	Calculate	the
volume	of	water	used	based	on	the	duration	it	was	running.	Do	this	by	first
calibrating	the	number	of	seconds	it	takes	to	fill	up	a	liter	(or	gallon,	for	the
metric	system-challenged)	at	the	valve	setting	established	by	the	stepper	motor
crank.

For	example,	if	it	takes	thirty	seconds	to	fill	up	a	liter	container,	running	the
sprinkler	for	ten	minutes	will	consume	20	liters	(2	liters	per	minute	times	10
minutes)	of	water	each	time	you	run	the	sprinkler.	Log	this	amount	with	the	help
of	an	XBee/PC	setup	(from	Chapter	5,	Tweeting	Bird	Feeder)	over	the	duration
of	the	month,	and	determine	from	your	water	bill	the	percentage	of	water	used
on	your	lawn.	Once	this	metric	is	calibrated,	you	can	calculate	lawn	sprinkling
costs	in	real	time	and	literally	watch	your	money	flow	out	of	the	spigot.

12.7	Networked	Smoke	Detectors
Smoke	detectors	save	lives	and	can	help	minimize	property	damage,	but	what
happens	when	the	alarm	goes	off	when	nobody	is	home?	If	you	know	what
you’re	doing,	you	can	hook	directly	into	the	onboard	electronics	of	the	smoke
detector	to	measure	the	voltage	change	when	the	alarm	goes	off,	but	doing	so
will	probably	void	your	detector’s	warranty.	It	could	also	put	the	lives	of	those
who	depend	on	its	life-saving	functionality	at	risk	if	the	device	is	improperly
modified.	Instead	of	soldering	directly	onto	the	smoke	detector’s	electronics,
obtain	an	Electret	microphone	breakout	board	and	use	your	Arduino	and	XBee
skills	to	hook	up,	calibrate,	and	monitor	the	microphone	input	for	the	audio
levels	attained	when	the	smoke	detector’s	alarm	is	sounding.[117]	When	an
alarm	is	detected,	have	your	XBee	message-receiving	PC	relay	you	the	message
via	an	urgent	email.	You	could	even	modify	the	Android	server	we	used	in
Chapter	9,	Android	Door	Lock,	to	take	a	photo	of	the	area	being	monitored	by
the	smoke	detector	and	attach	it	to	the	outbound	message.

You	could	even	link	this	alert	to	perform	further	actions,	such	as	auto-dialing
neighbors	with	a	recorded	message	asking	them	to	investigate	the	fire	on	your
behalf	and	call	you	(just	in	case	you	never	received	the	email).	And	if	you’re
really	confident	in	your	system’s	sensing	integrity,	you	could	go	so	far	as	to
auto-call	the	fire	department	if	you	don’t	deactivate	the	alarm	within	a
predetermined	duration	of	time	(though	keep	in	mind	that	improper	and/or
nonemergency	alerts	could	end	up	costing	you,	since	many	jurisdictions	have
penalties	for	false	calls).	Regardless	of	what	enhancements	you	add,	the	fact
remains	that	your	smoke	detector	can	extend	its	alert	distance	worldwide	thanks
to	the	Internet-enabled	communication	pathway	you	can	devise	for	it.

12.8	Proximity	Garage	Door	Opener
As	you	approach	your	garage	with	your	GPS-enabled	smartphone,	the	phone
triggers	a	request	to	open	the	garage	door.	This	relays	to	Arduino-XBee
hardware	attached	to	your	garage	door’s	RF-transmitting	garage	door	opener,
which	in	turn	transmits	the	request	to	the	automatic	garage	door	receiver	and
opens	the	door.

Sans	the	GPS	feature,	opening	a	garage	door	from	a	smartphone	like	the	Android
or	iOS	device	is	a	very	popular	DIY	project,	and	a	number	of	videos	doing	this
have	been	posted	on	YouTube.	Since	your	garage	is	a	fixed	location,	the	GPS
values	for	latitude/longitude/elevation	will	remain	static.	By	extending	the	Rails
server	we	wrote	in	Chapter	7,	WebEnabled	Light	Switch,	writing	the	smartphone
application	that	extends	the	toggle	functionality	of	the	garage	door	opening	and
closing	based	on	your	location	shouldn’t	be	too	difficult.

12.9	Smart	HVAC	Controller
Manage	your	air	conditioning	and	heating	needs	with	smarter	temperature
control	in	your	home.	You	can	dial	your	thermostat	up	or	down	based	on	a
specific	time	frame	or	operate	it	from	a	remote	location.	Ben	Heckendorn,	host
of	The	Ben	Heck	Show,	posted	an	episode	on	home	automation	featuring	this
project.[118]	I	like	his	approach	because	he	didn’t	mess	with	the	hardwired
internals	of	the	thermostat.	It	also	uses	parts	that	we	already	had	from	Chapter	8,
Curtain	Automation,	making	it	an	easy	project	to	assemble	and	implement.

12.10	Smart	Mailbox
This	is	another	popular	DIY	home	automation	project	that	has	numerous	write-
ups	and	video	posts	around	the	Web.	Simply	reuse	the	hardware	we	constructed
in	Chapter	5,	Tweeting	Bird	Feeder,	and	tweet	or	email	when	the	light	coming
from	the	open	mailbox	lid	hits	the	photocell.	You	could	also	have	the	speech
playback-enabled	Android	device	from	Chapter	10,	Giving	Your	Home	a	Voice,
audibly	announce	the	delivery,	as	in	“You’ve	Got	Mail!”

12.11	Smart	Lighting
Go	beyond	the	project	presented	in	Chapter	7,	WebEnabled	Light	Switch,	to
incorporate	a	managed	lighting	system	throughout	the	home.	Incorporate	motion
detectors	to	activate	and	deactivate	lights	in	basements,	bathrooms,	and
bedrooms.	Record	when	lights	turn	on	and	off,	and	correlate	the	monthly
operational	costs	associated	with	lighting	your	home	based	on	your	total
electricity	bill.

12.12	Solar	and	Wind	Power	Monitors
For	those	fortunate	enough	to	have	portions	of	their	electrical	power
consumption	supplied	by	residential	solar	and	wind	energy	collectors,	you	can
use	the	Arduino/XBee/PC	combination	to	measure	both	the	energy	generated	by
these	devices	and	the	status	of	the	battery’s	charge	being	stored	in	the	batteries
that	capture	and	store	the	output	of	these	reusable	energy	devices.

Send	email	alerts	when	the	battery’s	charge	is	below	a	certain	threshold.	Capture
the	stats	over	time	and	map	them	to	understand	the	month-to-month	fluctuations
that	can	be	used	to	predict	energy	output	for	years	to	come.

If	you	happen	to	build	these	or	any	other	home	automation	projects	that	you’re
proud	of,	keep	the	projects	alive	by	sharing	them	with	other	readers—post	your
ideas,	discoveries,	and	outcomes	to	the	Programming	Your	Home	book	forum.
See	you	online!

Footnotes

[113] http://www.adafruit.com/products/164

[114] http://www.adafruit.com/products/143

[115] http://www.adafruit.com/products/387

[116] https://www.adafruit.com/products/385

[117] http://www.sparkfun.com/products/9964

[118] http://revision3.com/tbhs/homeauto

Copyright	©	2012,	The	Pragmatic	Bookshelf.

http://www.adafruit.com/products/164
http://www.adafruit.com/products/143
http://www.adafruit.com/products/387
https://www.adafruit.com/products/385
http://www.sparkfun.com/products/9964
http://revision3.com/tbhs/homeauto

Part	4	
Appendices

Appendix

1	

Installing	Arduino	Libraries

One	of	the	biggest	advantages	of	the	Arduino	product	line	is	that	it	is	built	on	an
open	hardware	platform.	This	means	that	anyone	is	able	to	contribute	to	the
hardware	and	software	libraries.	These	libraries	can	be	easily	incorporated	into
Arduino	sketches	to	extend	the	Arduino’s	functionality	and,	in	many	cases,	make
it	easier	to	write	the	sketches	yourself.

Several	projects	in	this	book	benefitted	from	such	community	contributions.
Unfortunately,	installing	new	Arduino	libraries	isn’t	as	automatic	as	running	a
setup	script.	Library	files,	which	are	often	distributed	in	a	compressed	.zip
format,	need	to	be	uncompressed	and	placed	into	the	Arduino’s	libraries	folder.
The	location	of	this	folder	varies	depending	on	which	operating	system	the
Arduino	IDE	is	running	on.

A1.1	Apple	OSX

1.	 Locate	the	Arduino	icon,	typically	found	in	the	main	/Applications	folder.

2.	 Hold	down	the	Control	key	on	the	keyboard	and	click	the	Arduino	icon,
usually	located	in	the	/Applications	folder.	This	will	pop	up	a	context-
sensitive	menu.

3.	 Select	the	Show	Package	Contents	option	from	the	pop-up	menu.	This	will
open	a	folder	containing	the	Arduino	application	resources.

4.	 Navigate	to	the	Contents/Resources/Java/libraries	folder.

5.	 Copy	the	new	library	files	into	this	libraries	folder.

If	you	prefer,	you	can	also	place	library	files	in	your	home	directory’s
Documents/Arduino/libraries	folder.

A1.2	Linux

1.	 Locate	where	you	uncompressed	the	Arduino	application	files.

2.	 Navigate	to	the	libraries	folder.

3.	 Copy	the	new	library	files	into	this	libraries	folder.

A1.3	Windows

1.	 Locate	where	you	unzipped	the	Arduino	application	files.

2.	 Navigate	to	the	libraries	folder.

3.	 Copy	the	new	library	files	into	this	libraries	folder.

After	you	have	copied	the	library	files	into	their	appropriate	location,	restart	the
Arduino	IDE	so	that	the	library	can	be	referenced	in	your	sketches.

For	example,	to	install	the	CapSense	library	from	the	Chapter	5,	Tweeting	Bird
Feeder	project	on	a	computer	running	Apple	OS	X,	unzip	the	CapSense.zip	file.
Then	place	the	unzipped	CapSense	folder	into	the
ApplicationsArduino/Contents/Resources/Java/libraries	folder.	Restart	the	Arduino	IDE.
Create	a	new	Arduino	sketch.	Type	the	following	sketch	into	the	Arduino	IDE
window:

	 #include	<CapSense.h>;

	 void	setup()	{}

	 void	loop()	{}

Click	the	Verify	button	on	the	Arduino	IDE	toolbar.	If	the	CapSense	library	was
copied	to	the	correct	location,	this	three-line	sketch	should	compile	without
errors.

Copyright	©	2012,	The	Pragmatic	Bookshelf.

[Bur10]

[CADH09]

[Fal10]

[LA03]

[RC11]

[Sch11]

[TFH09]

Appendix

2	

Bibliography
Ed	Burnette.	Hello,	Android:	Introducing	Google’s	Mobile
Development	Platform,	Third	Edition.	The	Pragmatic	Bookshelf,
Raleigh,	NC	and	Dallas,	TX,	2010.
David	Chelimsky,	Dave	Astels,	Zach	Dennis,	Aslak	Hellesøy,	Bryan
Helmkamp,	and	Dan	North.	The	RSpec	Book.	The	Pragmatic
Bookshelf,	Raleigh,	NC	and	Dallas,	TX,	2009.
Robert	Faludi.	Building	Wireless	Sensor	Networks.	O’Reilly	&
Associates,	Inc,	Sebastopol,	CA,	2010.
Mark	Lutz	and	David	Ascher.	Learning	Python.	O’Reilly	&
Associates,	Inc,	Sebastopol,	CA,	2003.
Ben	Rady	and	Rod	Coffin.	Continuous	Testing:	with	Ruby,	Rails,	and
JavaScript.	The	Pragmatic	Bookshelf,	Raleigh,	NC	and	Dallas,	TX,
2011.
Maik	Schmidt.	Arduino:	A	Quick	Start	Guide.	The	Pragmatic
Bookshelf,	Raleigh,	NC	and	Dallas,	TX,	2011.
David	Thomas,	Chad	Fowler,	and	Andrew	Hunt.	Programming	Ruby:
The	Pragmatic	Programmer’s	Guide.	The	Pragmatic	Bookshelf,
Raleigh,	NC	and	Dallas,	TX,	Third	Edition,	2009.

Copyright	©	2012,	The	Pragmatic	Bookshelf.

You	May	Be	Interested	In…
Click	a	cover	for	more	information

http://pragmaticprogrammer.com/titles/jgade
http://pragmaticprogrammer.com/titles/eband3
http://pragmaticprogrammer.com/titles/msard
http://pragmaticprogrammer.com/titles/dccar
http://pragmaticprogrammer.com/titles/jcdeg
http://pragmaticprogrammer.com/titles/actb
http://pragmaticprogrammer.com/titles/pg_git
http://pragmaticprogrammer.com/titles/pg_js
http://pragmaticprogrammer.com/titles/btlang
http://pragmaticprogrammer.com/titles/rwdata

	Programming Your Home
	​
	Table of Contents
	Praise for Programming Your Home
	Acknowledgments
	Preface
	Who Should Read This Book
	What’s in This Book
	Arduinos, Androids, and iPhones, Oh My!
	Code Examples and Conventions
	Online Resources

	Part 1: Preparations
	Chapter 1: Getting Started
	1.1 What Is Home Automation?
	1.2 Commercial Solutions
	1.3 DIY Solutions
	1.4 Justifying the Investment
	1.5 Setting Up Your Workbench
	1.6 Sketching Out Your Ideas
	1.7 Writing, Wiring, and Testing
	1.8 Documenting Your Work

	Chapter 2: Requirements
	2.1 Knowing the Hardware
	2.2 Knowing the Software
	2.3 Be Safe, Have Fun!

	Part 2: Projects
	Chapter 3: Water Level Notifier
	3.1 What You Need
	3.2 Building the Solution
	3.3 Hooking It Up
	3.4 Sketching Things Out
	3.5 Writing the Web Mailer
	3.6 Adding an Ethernet Shield
	3.7 All Together Now
	3.8 Next Steps

	Chapter 4: Electric Guard Dog
	4.1 What You Need
	4.2 Building the Solution
	4.3 Dog Assembly
	4.4 Dog Training
	4.5 Testing It Out
	4.6 Unleashing the Dog
	4.7 Next Steps

	Chapter 5: Tweeting Bird Feeder
	5.1 What You Need
	5.2 Building the Solution
	5.3 The Perch Sensor
	5.4 The Seed Sensor
	5.5 Going Wireless
	5.6 Tweeting with Python
	5.7 Putting It All Together
	5.8 Next Steps

	Chapter 6: Package Delivery Detector
	6.1 What You Need
	6.2 Building the Solution
	6.3 Hardware Assembly
	6.4 Writing the Code
	6.5 The Package Delivery Sketch
	6.6 Testing the Delivery Sketch
	6.7 The Delivery Processor
	6.8 Creating the Delivery Database
	6.9 Installing the Package Dependencies
	6.10 Writing the Script
	6.11 Testing the Delivery Processor
	6.12 Setting It Up
	6.13 Next Steps

	Chapter 7: Web-Enabled Light Switch
	7.1 What You Need
	7.2 Building the Solution
	7.3 Hooking It Up
	7.4 Writing the Code for the Web Client
	7.5 Testing Out the Web Client
	7.6 Writing the Code for the Android Client
	7.7 Testing Out the Android Client
	7.8 Next Steps

	Chapter 8: Curtain Automation
	8.1 What You Need
	8.2 Building the Solution
	8.3 Using the Stepper Motor
	8.4 Programming the Stepper Motor
	8.5 Adding the Sensors
	8.6 Writing the Sketch
	8.7 Installing the Hardware
	8.8 Next Steps

	Chapter 9: Android Door Lock
	9.1 What You Need
	9.2 Building the Solution
	9.3 Controlling the Android Door Lock
	9.4 Writing the Android Server
	9.5 Writing the Android Client
	9.6 Test and Install
	9.7 Next Steps

	Chapter 10: Giving Your Home a Voice
	10.1 What You Need
	10.2 Speaker Setup
	10.3 Giving Lion a Voice
	10.4 Wireless Mic Calibration
	10.5 Programming a Talking Lion
	10.6 Conversing with Your Home
	10.7 Next Steps

	Part 3: Predictions
	Chapter 11: Future Designs
	11.1 Living in the Near
	11.2 The Long View
	11.3 The Home of the Future

	Chapter 12: More Project Ideas
	12.1 Clutter Detector
	12.2 Electricity Usage Monitor
	12.3 Electric Scarecrow
	12.4 Entertainment System Remote
	12.5 Home Sleep Timer
	12.6 Humidity Sensor-Driven Sprinkler System
	12.7 Networked Smoke Detectors
	12.8 Proximity Garage Door Opener
	12.9 Smart HVAC Controller
	12.10 Smart Mailbox
	12.11 Smart Lighting
	12.12 Solar and Wind Power Monitors

	Part 4: Appendices
	Appendix 1: Installing Arduino Libraries
	A1.1 Apple OSX
	A1.2 Linux
	A1.3 Windows

	Appendix 2: Bibliography
	You May Be Interested In…

